JOURNAL ARTICLE

Optimal Portfolio Choice and the Valuation of Illiquid Securities Get access >

Francis A. Longstaff

The Review of Financial Studies, Volume 14, Issue 2, April 2001, Pages 407–431, https://doi.org/10.1093/rfs/14.2.407

Published: 21 June 2015

Abstract

Traditional models of portfolio choice assume that investors can continuously trade unlimited amounts of securities. In reality, investors face liquidity constraints. I analyze a model where investors are restricted to trading strategies that are of bounded variation. An investor facing this type of illiquidity behaves very differently from an unconstrained investor. A liquidity-constrained investor endogenously acts as if facing borrowing and short-selling constraints, and one may take riskier positions than in liquid markets. I solve for the shadow cost of illiquidity and show that large price discounts can be sustained in a rational model.

Oxford University Press

Issue Section: Article

You do not currently have access to this article.

Sign in

1 Get help with access

Personal account

- Sign in with email/username & password
- Get email alerts
- Save searches
- Purchase content
- Activate your purchase/trial code

Institutional access

Sign in through your institution

Sign in through your institution

Sign in with a library card

Sign in with username/password

• Add your ORCID iD

Register

Recommend to your librarian

Institutional account management

Sign in as administrator

Purchase

Subscription prices and ordering for this journal

Purchasing options for books and journals across Oxford Academic

Short-term Access

To purchase short-term access, please sign in to your personal account above.

Don't already have a personal account? Register

Optimal Portfolio Choice and the Valuation of Illiquid Securities - 24 Hours access

EUR €53.00 GBP £44.00 USD \$58.00

Rental

This article is also available for rental through DeepDyve.