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Abstract

The goal of this paper is to investigate the e�ects of time-varying extreme

event risk in asset markets. The chief obstacle to this investigation is a viable

measure of tail risk over time. Ideally, one would directly construct a

measure of aggregate tail risk dynamics from the time series of, say, market

returns or GDP growth rates, much like dynamic volatility estimated from a

GARCH model. But dynamic tail risk estimates are infeasible in a univariate

time series model because of the infrequent nature of extreme events.

To overcome this problem, we devise a panel estimation approach that

captures common variation in the tail risks of individual �rms. If �rm-level

tail distributions possess similar dynamics, then the cross-section of crash

events for individual �rms can be used to identify the common component

of their tail risk at each point in time.

Our empirical framework centers on a reduced-form description for the tail
distribution of returns. The time  lower tail distribution is de�ned as the set

of return events falling below some extreme negative threshold  . We
assume that the lower tail of asset return  behaves according to 

We propose a new measure of time-varying tail risk that is directly

estimable from the cross-section of returns. We exploit �rm-level price

crashes every month to identify common �uctuations in tail risk among

individual stocks. Our tail measure is signi�cantly correlated with tail

risk measures extracted from S&P 500 index options and negatively

predicts real economic activity. We show that tail risk has strong

predictive power for aggregate market returns. Cross-sectionally,

stocks with high loadings on past tail risk earn an annual three-factor

alpha 5.4% higher than stocks with low tail risk loadings. We explore

potential mechanisms giving rise to these asset pricing facts.
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 where  . Equation

(1) states that extreme return events obey a power law. The key parameter of
the model,  , determines the shape of the tail and is referred to as the
tail exponent. Because  ,  . Therefore  to ensure

that the probability  always lies between zero and one. High
values of  correspond to “fat” tails and high probabilities of extreme

returns.

In contrast to past power law research, Equation (1) is a model of the

conditional return tail. The  term in the exponent may vary with the

conditioning information set  . Although di�erent assets can have

di�erent levels of tail risk (determined by the constant  ), dynamics are the

same for all assets because they are driven by the common process  . Thus,

we refer to  as “tail risk” at time  , and we refer to the tail structure in (1)

as a “dynamic power law.”

We build a tail risk measure from the dynamic power law structure (1). The

identifying assumption is that tail risks of individual assets share similar

dynamics. Therefore, in a su�ciently large cross section, enough stocks will

experience individual tail events each period to provide accurate information

about the prevailing level of tail risk. Applying Hill's (1975) power law

estimator to the time  cross-section recovers an estimate of  .

We �nd that the time-varying tail exponent is highly persistent. We estimate

 separately each month, so there is no mechanical persistence in this

series, yet we �nd a monthly AR(1) coe�cient of 0.927. Thus,  has strong

predictive power for future extreme returns of individual stocks, o�ering a

�rst indication that  is a potentially important determinant of asset prices.

We also �nd a high degree of commonality in time-varying tail exponents

across �rms, supporting our assumption of common �rm-level tail

dynamics. For example, when we estimate separate tail risk series for each

industry, we �nd time series correlations in their tail risks ranging from

57% to 87%.

Our primary contribution is an empirical analysis of the impact of tail risk on

asset markets. First, we test the hypothesis that tail risk forecasts aggregate

stock market returns. Predictive regressions show that a one-standard-

deviation increase in tail risk forecasts an increase in annualized excess

market returns of 4.5%, 4.0%, 3.7%, and 3.2% at the one-month, one-year,

three-year, and �ve-year horizons, respectively. These are all statistically

signi�cant with -statistics of 2.1, 2.0, 2.4, and 2.7. These results are robust
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out-of-sample, producing a 4.5%  at the annual frequency, compared to

6.1% in-sample. The forecasting power of tail risk is also robust to

controlling for a broad set of alternative predictors, outperforming the

dividend-price ratio and other common predictors surveyed by Goyal and

Welch (2008).

The tail exponent also has substantial predictive power for the cross-section

of average returns. We run predictive regressions for each stock, then sort

stocks based on their predictive tail risk exposures. Stocks in the highest

quintile earn annual value-weighted three-factor alphas 5.4% higher than

stocks in the lowest quintile over the subsequent year. This tail risk premium

is robust to controlling for other priced factors and characteristics, including

momentum (Carhart 1997), liquidity (Pastor and Stambaugh 2003),

idiosyncratic stock volatility (Ang, Hodrick, Xing and Zhang 2006),

downside beta (Ang, Chen, and Xing 2006), and coskewness (Harvey and

Siddique 2000). We also �nd a strong association between our tail risk

measure and the crash insurance premium on deep out-of-the-money

equity put options.

We explore two channels through which our tail risk measure may correlate

with state variables driving the stochastic discount factor. Each channel

provides a potential explanation for why the common component of �rm-

level tail risk is related to equity premia.

First, aggregate tail risks, which we expect to have important pricing

implications, are mathematically linked to common dynamics in �rm-level

tails. In particular, power law distributions are stable under aggregation: a

sum of power law returns inherits the tail behavior of the individual returns.

This implies that �rm-level tail distributions are informative about the

likelihood of market-wide extremes.

A second link between individual �rm risks and aggregate e�ects may arise

from the impact of uncertainty shocks on real outcomes. Bloom (2009)

argues that, because of capital and labor adjustment costs, an increase in

uncertainty raises the value of a �rm's “real options,” such as the option to

postpone investment decisions. In his framework, �rm-level uncertainty for

all �rms �uctuates in concert through time. A common rise in uncertainty

depresses aggregate economic activity by inducing all �rms to

simultaneously reduce investment and hiring. Although Bloom focuses on

uncertainty in the form of volatility, his rationale also implies that common

changes in �rm-level tail risk can have important aggregate real e�ects.

Because we �nd common �uctuations in tail risk across �rms, �rm-level tail

uncertainty may adversely a�ect aggregate real outcomes, representing a

second potential channel through which tail risk impacts equity premia.
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We explore both of these mechanisms empirically. Over the 1963 to 2010

sample, an increase in our tail risk measure signi�cantly forecasts higher

market return kurtosis and lower (more negative) market return skewness

(after controlling for own lags of market skewness and kurtosis). Options

data, though only available for the last twenty years, provide a second

opportunity to investigate whether our tail estimator is correlated with tail

risk of the market portfolio. In particular, we compare our measure to

option-implied risk measures for the S&P 500 index. We �nd that our tail

measure has a signi�cant 33% correlation with option-implied kurtosis and

−30% correlation with option-implied skewness, suggesting that our

measure is closely associated with tail risks perceived by option market

participants. In summary, tests based on higher moments of the market

return distribution, estimated either from market returns data or S&P 500

options data, corroborate the power law aggregation property that �rm-

level tail distributions contain information about the likelihood of aggregate

extreme events.

Motivated by the uncertainty shocks argument of Bloom (2009), we

investigate whether there is evidence of time-varying tail risk in �rms'

fundamentals. We apply our estimation approach to the panel of �rm-level

sales growth and show that dynamics in stock return tails share a signi�cant

correlation of 31% with �uctuations in the tail distribution of cash �ows ( -

value of 0.008). Furthermore, we �nd that economic activity is highly

sensitive to tail risk shocks. Aggregate investment, output, and employment

drop signi�cantly following an increase in tail risk. These facts provide a

bridge between empirical studies of fat-tailed stock return behavior and

theoretical models of tail risk in the real economy.

Our research question draws on several strands of literatures. Recently,

researchers have hypothesized that heavy-tailed shocks to economic

fundamentals help explain certain asset pricing behavior that has proved

otherwise di�cult to reconcile with traditional macro�nance theory.

Examples include the Rietz (1988) and Barro (2006) rare disaster hypothesis

and its extensions to dynamic settings by Gabaix (2012), Gourio (2012), and

Wachter (2013), as well as extensions of Bansal and Yaron's (2004) long-run

risks model that incorporate fat-tailed endowment shocks (Eraker and

Shaliastovich 2008; Bansal and Shaliastovich 2010, 2011; Drechsler and

Yaron 2011).  Model calibrations show that this class of models matches a

number of key asset pricing moments. Ours is the �rst paper to directly

document time-varying tail risk in fundamentals. We also provide direct

estimates of the association between tail risk and risk premia (as opposed to

model calibrations). There are two key equity premium implications from

these models, and we �nd that tail risk signi�cantly relates to return data in

the manner predicted. First, tail risk positively forecasts excess market

returns. Because investors are tail risk averse, increases in tail risk raise the
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return required by investors to hold the market, thereby inducing a positive

predictive relationship between tail risk and future returns. The second

implication applies to the cross-section of expected returns. High tail risk is

associated with bad states of the world and high marginal utility. Hence,

assets that hedge tail risk are more valuable (have lower expected returns)

than those that are adversely exposed to tail risk.

Since at least Mandelbrot (1963) and Fama (1963), a separate thread of

literature has developed arguing that unconditional return distributions are

heavy tailed and aptly described by a power law. More recent empirical work

suggests that the return tail distribution varies over time.  We show that

empirical studies of fat-tailed stock return behavior and theoretical models

of tail risk in the real economy are closely linked.

There are two current approaches to measuring tail risk dynamics for stock

returns: one based on option price data and another on high frequency

return data. Examples of the option-based approach include Bakshi,

Kapadia, and Madan (2003), who study risk-neutral skewness and kurtosis,

Bollerslev, Tauchen, and Zhou (2009), who examine how the variance risk

premium relates to the equity premium, and Backus, Chernov, and Martin

(2011) and Gao and Song (2013), who infer disaster risk premia from options.

Tail estimation from high-frequency data is exempli�ed by Bollerslev and

Todorov (2011). These approaches are powerful but subject to data

limitations (sample horizons are at most 20 years for returns, and the

method cannot be applied to low frequency cash �ow data). Our tail risk

series is estimated using returns and sales growth data since 1963, and may

be used in any setting in which a large cross-section is available.

1. Empirical Methodology

1.1 The tail distribution of returns

We posit that returns obey the dynamic power law structure in Equation (1).

An extensive literature in �nance, statistics, and physics has thoroughly

documented power law tail behavior of equity returns.  Evidence suggests

that the key parameter of this power law may vary over time (Quintos, Fan,

and Phillips 2001). We propose a novel speci�cation for equity returns in

which the tail distribution obeys a potentially time-varying power law.

Modeling dynamic tail risk is challenging because observations that are

informative about tails occur rarely by de�nition. To overcome this

challenge, our approach relies on commonality in the tail risks of individual

assets, in turn exploiting the comparatively rich information about tail risk

in the cross-section of returns. We allow for a di�erent level of �rm-speci�c

tail risk across assets, but assume that tail risk �uctuations for all assets are
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governed by a single process. This structure implies that �rms have di�erent

unconditional tail risks, but their tail risk dynamics are similar (we provide

evidence below that supports this assumption).

Conditional upon exceeding some extreme lower “tail threshold,”  , and
given information  , we assume that an asset's return obeys the tail

probability distribution in Equation (1).  We estimate the common time-
varying component of return tails,  , month-by-month by applying Hill's

(1975) power law estimator to the set of daily return observations for all
stocks in month  .  Applied to the pooled cross-section each month, it takes

the form  where  is the th daily return that falls

below an extreme value threshold  during month  , and  is the total
number of such exceedences within month  .

The threshold parameter  is chosen by the econometrician and de�nes

where the center of the distribution ends and the tail begins. It represents a

suitably extreme quantile such that any returns below this cuto� are

assumed to obey the speci�ed tail distribution. We de�ne  as the �fth

percentile of the cross-section each period.

The extreme value approach constructs Hill's measure using only those
observations that exceed the tail threshold (observations such that 

 , referred to as -exceedences”) and discards nonexceedences. To
understand why this is a sensible estimate of the exponent, �rst note that

nonexceedences are part of the nontail domain and thus they need not obey a
power law and are appropriately omitted from tail estimates. Second,

because -exceedences obey a power law with exponent 
exceedences are exponentially distributed with scale parameter  . By the

properties of an exponential random variable, /  .

When all stocks have the same ex ante probability of experiencing a
threshold exceedence, the expected value of  becomes the cross-

sectional harmonic average tail exponent: 

Equation (2) states that, in expectation, the Hill estimator is equal to the true
common tail risk component  times a constant multiplicative bias term.

Thus, expected value of period-by-period Hill estimates is perfectly
correlated with  .
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1.2 Other empirical considerations

A potential empirical concern is bias in tail estimates arising from

dependence among returns. This can be mitigated by �rst removing

common return factors and then estimating the tail process from return

residuals. We implement this strategy by removing common return factors

with Fama and French's (1993) three-factor model regressions and then

estimating tail risk from the residuals.

Next, because the tail threshold varies over time, common time-variation in

volatility is largely taken into account in the construction of our tail

estimates. The threshold expands and contracts with volatility so that a �xed

fraction of the most extreme observations is used for estimation each period.

This mitigates the potential contamination of the tail risk time series

because of volatility dynamics.

A third potential concern is the in�uence that cross-sectional volatility

heterogeneity may have on tail estimates. One way to address this

heterogeneity is to variance-standardize returns in a preliminary estimation

step. Substantial measurement-related problems arise with this approach,

as the behavior of standardized returns can be highly sensitive to estimation

error in the divisor. Furthermore, variance heterogeneity has little e�ect on

the performance of the Hill estimator–Monte Carlo evidence in Appendix A

demonstrates that tail risk can be accurately estimated from raw returns in

the presence of cross-sectional volatility heterogeneity. Therefore, our

results focus on tail estimates of nonstandardized returns. As a robustness

check, we estimate tail risk using volatility-standardized returns.  This

series is 90% correlated with our main tail risk series that relies on

unstandardized data, and produces qualitatively similar results in our asset

pricing tests.

Appendix A discusses additional potential confounding issues that can arise

when estimating tail risk. We show via simulation that Hill estimates appear

consistent amid common forms of dependence and heterogeneity known to

exist in return data. The simulations corroborate theoretical results from the

extreme value literature (see Hill 2010).

1.3 Hypotheses

Our hypothesis is that investors' marginal utility (and hence the stochastic

discount factor) is increasing in tail risk and that tail risk is persistent. These

hypotheses have two testable asset pricing implications. The �rst applies to

the equity premium time series. Because investors are averse to tail risk, a

positive tail risk shock increases the return required by investors to hold any

tail risky portfolio, including the market portfolio. Tail risk persistence is a

necessary condition for time series e�ects because investors will only
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dynamically adjust their discount rates in response to shocks that are

informative about future levels of tail risk. Empirically, we test whether tail

risk positively forecasts market returns. Second, assets that better hedge tail

risk will command a relatively high price and earn low expected returns. This

implication may be tested in the cross-section by comparing average returns

of assets to their estimated tail risk sensitivities.

2. Empirical Results

2.1 Tail risk estimates

We estimate the dynamic power law exponent using daily CRSP data from

January 1963 to December 2010 for NYSE/AMEX/NASDAQ stocks with share

codes 10 and 11. Large data sets are crucial to the accuracy of extreme value

estimates because only a small fraction of data is informative about the tail

distribution. Because our approach to estimating the dynamic power law

exponent relies on the cross-section of returns, we require a large panel of

stocks in order to gather su�cient information about the tail at each point in

time. The number of stocks in CRSP varies dramatically over time.  We focus

on the 1963 to 2010 sample because of the cross-section expansion of CRSP

beginning in August 1962. To further increase the sample size and reduce

sampling noise, we estimate the tail exponent monthly, pooling all daily

observations within the month.

Figure 1 plots the estimated tail risk series alongside the market return over

the subsequent three-year period (the series are scaled for comparison). Tail

risk appears countercyclical. Our sample begins just after a 28% drop in the

aggregate U.S. stock market during the �rst half of 1962. This major market

decline was the �rst in the postwar era. Estimated tail risk is high at this

starting point, but begins to decline steadily until December 1968, when it

reaches its lowest level in the sample. This tail risk minimum corresponds to

a late 1960's bull market peak, the level of which is not reached again until

the mid-1970s. Tail risk rises throughout the 1970s, accelerating its ascent

during the oil crisis. It �uctuates above its mean for several years. Tail risk

recedes in the four bull market years leading to 1987, rising quickly in the

months following the October crash. During the technology boom, tail risk

retreats sharply but brie�y, rising to its highest post-2000 level amid the

early 2003 market trough. At this time the value-weighted index was down

49% from its 2000 high and NASDAQ was 78% o� its peak. During the last

half of the decade, tail risk hovers close to its mean, and is roughly �at

through the 2007–2009 �nancial crisis and recession.
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Figure 1 Tail exponent estimates and subsequent market returns

Plotted is the monthly estimated tail risk time series. Tail estimates are calculated each
month by pooling daily returns of NYSE/AMEX/NASDAQ stocks. Also plotted in each month 
is the realized market return over the three years following month  . To emphasize
comparison, both series have been scaled to have mean zero and variance one.

The absence of an increase in measured tail risk during the recent �nancial

crisis may be surprising prima facie, but is potentially consistent with the

account of the recent �nancial crisis by Brownlees, Engle, and Kelly (2011).

They argue that the �nancial crisis was characterized by soaring volatility,

but that this volatility was predictable over short horizons using standard

volatility forecasting models and that volatility-adjusted residuals do not

appear extreme compared with their historical distribution. This argument

is also consistent with Figure 2, which plots the cross-section tail threshold

series  (in absolute value) alongside monthly realized volatility of the CRSP

value-weighted index. The lower tail threshold has a 60% correlation with

market volatility. During the crisis period, the threshold, which measures

the dispersion of the cross-section distribution, spikes drastically along with

market volatility. A �xed percentile is used to de�ne the tail region for

exactly this reason. If volatility rises dramatically but the shape of return

tails is unchanged, then a widening of the threshold will absorb the e�ect of

volatility changes and leave estimates of the tail exponent una�ected.
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ût

15

javascript:;
javascript:;
javascript:;


Figure 2 Tail threshold and aggregate market volatility

Plotted is the monthly tail threshold series. The threshold is the absolute value of the fi�h
percentile of monthly pooled daily returns of NYSE/AMEX/NASDAQ stocks. Also plotted is
the monthly realized volatility of the CRSP value-weighted index. To emphasize
comparison, both series have been scaled to have the mean zero and variance one.

The tail series is highly persistent, possessing a monthly AR(1) coe�cient of

0.927. Because the Hill measure is estimated month-by-month with

nonoverlapping data, this autocorrelation is strong evidence that the

severity of extreme returns is highly predictable. The estimated persistence

in tail risk is on par with that of equity volatility. Because tail shocks are

persistent, they have the potential to weigh signi�cantly on equilibrium

prices.

2.2 Predicting stock market returns

We test the hypothesis that tail risk forecasts returns of the aggregate

market portfolio with a series of predictive regressions. All regressions are

conducted at the monthly frequency, meaning that observations are

overlapping for the one-, three-, and �ve-year analyses. We conduct

inference using the Hodrick's 1992 standard error correction for overlapping

data.

The dependent variable is the return on the CRSP value-weighted index at

frequencies of one month, one year, three years, and �ve years. To illustrate

economic magnitudes, all reported predictive coe�cients are scaled to be

interpreted as the e�ect of a one-standard-deviation increase in the

regressor on future annualized returns. Table 1 shows that tail risk has large,

signi�cant forecasting power over all horizons. A one-standard-deviation

increase in lower tail risk predicts an increase in future excess returns of

4.5%, 4.0%, 3.7%, and 3.2% per annum, based on data for one-month, one-
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year, three-year, and �ve-year horizons, respectively. The corresponding

Hodrick -statistics are 2.1, 2.0, 2.4, and 2.7.

Table 1
Market return predictability: univariate predictor performance

t
17

One-month horizon One-year horizon Three-year horizon Fiv

Coe�. -
stat.

Coe�. t-
stat.

Coe�. t-
stat.

Co

Tail 4.54 −2.08 0.7 4.02 −2.04 6.1 3.65 −2.40 16.6 3.1

Book-to-
market

2.49 −1.14 0.2 3.12 −1.34 3.7 2.26 −1.12 6.3 2.7

Default
return
spread

2.96 −1.36 0.3 0.43 −0.57 0.1 0.28 −1.22 0.1 0.0

Default
yield
spread

2.82 −1.29 0.3 2.93 −1.63 3.2 1.90 −1.19 4.5 3.0

Dividend
payout
ratio

0.79 −0.36 0.0 1.55 −0.90 0.9 1.90 −1.38 4.4 3.5

Dividend
price ratio

4.24 −1.94 0.7 4.75 −2.07 8.5 4.34 −2.56 23.1 4.1

Earnings
price ratio

3.23 −1.48 0.4 3.16 −1.48 3.8 2.54 −1.65 8.0 3.7

Inflation −5.07 −2.33 0.9 −1.67 −1.09 1.1 0.40 −0.40 0.2 0.8

Long-
term
return

5.40 −2.48 1.1 1.83 −3.04 1.3 0.56 −2.16 0.4 0.6

Long-
term yield

1.95 −0.89 0.1 3.72 −1.70 5.2 4.26 −3.48 21.9 4.5

Net equity
expansion

−0.71 −0.33 0.0 −0.03 −0.01 0.0 0.44 −0.27 0.2 −0

Stock
volatility

−6.24 −2.87 1.4 0.61 −0.50 0.1 0.07 −0.13 0.0 0.0

Term
spread

2.28 −1.04 0.2 2.57 −1.35 2.5 2.53 −1.69 7.7 2.1

Treasury-
bill rate

0.44 −0.20 0.0 1.78 −0.80 1.2 2.33 −1.48 6.3 3.0

t R2 R2 R2
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The table reports results from monthly predictive regressions of CRSP value-weighted
market index returns over one-month, one-year, three-year, and five-year horizons. The
first row reports forecasting results based on our estimated tail risk time series. Next are the
results from predictors studied in the survey by Goyal and Welch (2008) (data from Amit
Goyal's Web site), as well as the variance risk premium (Bollerslev, Tauchen, and Zhou
2009, data from Hao Zhou's Web site) and risk-neutral skewness and kurtosis based on S&P
500 index options. (*) denotes that a variable is available for a truncated sample: the
variance risk premium is only available beginning in 1990, and risk-neutral moments are
only available beginning in 1996. Because overlapping monthly observations are used, test
statistics are calculated using Hodrick's (1992) standard error correction for overlapping
data with lag length equal to the number of months in each horizon. For comparison,
reported predictive coe�icients are scaled to be interpreted as the percentage change in
annualized expected market returns resulting from a one-standard-deviation increase in
each predictor variable.

Table 1 compares the forecasting power of tail risk with a large set of

alternative forecasting variables studied in a survey by Goyal and Welch

(2008).  The aggregate dividend-price ratio is the only other predictor with

performance comparable to tail risk. The long-term bond return strongly

predicts one-month returns, but its e�ect dies out at longer horizons. The

long-term yield is successful at long horizons, but has weak short horizon

predictability.

We next run bivariate regressions using lower tail risk alongside each Goyal

and Welch variable to assess the robustness of tail risk's return forecasts

after controlling for alternative predictors. Table 2 presents these results.

Conclusions regarding the predictive ability of tail risk are una�ected by

including alternative regressors. For one-month forecasts, the tail risk

predictive coe�cient remains above 4% when combined with each of the

Goyal and Welch variables, with a -statistic above 1.8 in all cases. At longer

horizons, the performance of tail risk relative to alternatives becomes

stronger. At the �ve-year horizon, the -statistic is always above 2.2, except

when included with the long-term yield, in which case the -statistic is 1.7.

Tail risk, when combined with the dividend-price ratio, achieves impressive

levels of predictability, reaching  values of 38% at three years and 54% at

�ve years.

Var. risk
prem.*

11.22 −3.45 4.5 3.32 −2.18 3.5 0.63 −0.33 0.3 −1

R.N.
skewness*

−0.74 −0.17 0.0 −1.13 −0.34 0.3 −0.35 −0.18 0.1 −0

R.N.
kurtosis*

−1.82 −0.43 0.1 1.56 −0.53 0.6 1.16 −0.48 1.0 0.5
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Table 2
Market return predictability: bivariate predictor performance

One-month horizon One-year horizon

Tail
Coe�.

Tail
t-
stat.

Coe�. t-
stat.

Tail
Coe�.

Tail
t-
stat.

Coe�. t-
stat.

Book-to-
market

4.68 2.15 2.73 −1.25 1.0 4.19 2.27 −3.34 1.49

Default
return
spread

4.57 2.10 3.01 −1.38 1.1 4.02 2.05 −0.46 0.61

Default
yield
spread

4.32 1.97 2.42 −1.10 1.0 3.78 2.01 −2.58 1.51

Dividend
payout
ratio

4.67 2.13 1.26 −0.58 0.8 4.22 2.19 −1.98 1.14

Dividend
price ratio

4.32 1.98 4.00 −1.84 1.3 3.77 2.07 −4.54 2.03

Earnings
price ratio

4.22 1.92 2.73 −1.25 1.0 3.70 1.92 −2.72 1.31

Inflation 4.12 1.89 −4.70 −2.16 1.5 3.90 2.01 −1.32 −0.88

Long-
term
return

4.04 1.85 5.00 −2.29 1.6 3.88 1.99 −1.44 2.82

Long-
term yield

4.34 1.91 0.71 −0.31 0.8 3.22 1.54 −2.80 1.23

Net
equity
expansion

4.86 2.10 0.93 −0.40 0.8 4.53 2.31 −1.51 0.53

Stock
volatility

4.04 1.86 −5.90 −2.71 2.0 4.10 2.07 −0.95 0.77

Term
spread

4.27 1.83 0.80 −0.34 0.8 3.56 1.74 −1.33 0.67

Treasury-
bill rate

4.53 2.07 0.18 −0.08 0.8 3.93 1.99 −1.55 0.74

R2

Three-year horizon Five-year horizon

Tail
Coe�.

Tail
t-
stat.

Coe�. -
stat.

Tail
Coe�.

Tail
t-
stat.

Coe�. t-
stat.

t R2



The table reports results from monthly predictive regressions of CRSP value-weighted
market index returns over one-month, one-year, three-year, and five-year horizons. The
table repeats the analysis of Table 1 but instead reports bivariate regressions that include
each alternative predictor alongside the estimated tail risk process. For each horizon, the
first two columns are the coe�icient estimate and -statistic for the tail risk process,
whereas the third and fourth columns are the coe�icient and -statistic for the alternative
predictor. Because overlapping monthly observations are used, test statistics are
calculated using Hodrick's (1992) standard error correction for overlapping data with lag
length equal to the number of months in each horizon. For comparison, reported predictive
coe�icients are scaled to be interpreted as the percentage change in annualized expected
market returns resulting from a one-standard-deviation increase in each predictor variable.

Book-to-
market

3.77 2.56 2.44 1.40 24.0 3.31 2.55 2.92 2.31

Default
return
spread

3.66 2.40 0.34 1.61 16.7 3.16 2.65 0.04 0.39

Default
yield
spread

3.51 2.25 1.57 1.14 19.6 2.83 2.28 2.57 2.79

Dividend
payout
ratio

3.86 2.57 2.27 1.72 22.8 3.36 2.80 3.97 4.55

Dividend
price ratio

3.40 2.47 4.13 2.65 37.5 2.88 2.47 3.99 3.66

Earnings
price ratio

3.40 2.28 2.14 1.54 22.2 2.84 2.21 3.38 2.77

Inflation 3.72 2.47 0.73 0.83 17.2 3.30 2.61 1.25 1.26

Long-
term
return

3.63 2.38 0.18 0.85 16.6 3.13 2.63 0.28 1.74

Long-
term yield

2.63 1.72 3.46 2.53 29.7 1.99 1.74 3.94 4.68

Net
equity
expansion

4.31 2.68 1.91 1.14 20.6 3.73 2.71 1.62 1.49

Stock
volatility

3.69 2.41 0.38 0.67 16.8 3.17 2.66 0.24 0.66

Term
spread

3.17 2.03 1.41 1.06 18.7 2.77 2.46 1.11 0.99

Treasury-
bill rate

3.51 2.43 2.07 1.45 21.6 2.98 2.28 2.77 2.75

t

t
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We also investigate the out-of-sample predictive ability of tail risk. Using

data only through month  (beginning at  to allow for a su�ciently

large initial estimation period), we run univariate predictive regressions of

market returns on tail risk. This coe�cient is used to forecast the 

return. The estimation window is then extended by one month to obtain a

new predictive coe�cient, and an out-of-sample forecast of the following

month's return is constructed. This procedure is repeated until the full

sample has been exhausted. Because coe�cients are based only on data

through  , this procedure mimics the information set an investor would work

with in real time. Using the forecast errors from this approach, we calculate

the out-of-sample  as 

where  is the out-of-sample forecast of the  return based only

on data through  , and  is the historical average market return through  .

A negative  implies that the predictor performs worse than setting

forecasts equal to the historical mean. This recursive out-of-sample forecast

approach is also performed using each of the alternative predictors from the

preceding tables.  The results from this analysis are reported in Table 3. Tail

risk forecasts demonstrate similar predictive success out-of-sample. At the

one-month, one-year, three-year, and �ve-year horizons, the tail risk out-

of-sample  is 0.3%, 4.5%, 15.7%, and 20.1%, versus 0.7%, 6.1%, 16.6%,

and 20.9% in-sample. We conduct tests of out-of-sample predictive power

based on Clark and McCracken's (2001) method, which is the benchmark

out-of-sample predictive test in the forecasting literature. According to this

test, only tail risk and the long-term yield demonstrate statistically

signi�cant out-of-sample performance at multiple horizons (at the 5%

signi�cance level or better).

Table 3
Market return predictability: out-of-sample  (%)

t t = 120

t + 1

t

R2 1 −∑t (rm,t+1−r̂m,t+1|t)
2/∑t (rm,t+1 − r̂m,t)

2
,

r̂m,t+1|t t + 1

t r̄m,t t

R2
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R2

R2

One month One year Three years Five years

Tail 0.3 4.5* 15.7* 20.1*

Book-to-market −1.6 −9.9 −14.5 −34.0

Default return spread −0.9 −0.6 −0.4 −0.3

Default yield spread −0.6 −0.5 −9.2 3.0

Dividend payout ratio −1.7 −23.6 −13.7 −46.4

Dividend price ratio −1.3 −6.5 −4.4 15.8*

Earnings price ratio −1.8 −15.6 −9.3 1.3

Inflation −0.4 −4.0 −3.1 −11.4

javascript:;
javascript:;


The table reports the out-of-sample forecasting  in percent from predictive regressions
of CRSP value-weighted market index returns over one-month, one-year, three-year, and
five-year horizons. In each month  (beginning at  to allow for a su�iciently large
initial estimation period), we estimate rolling univariate forecasting regressions of monthly
market returns on the estimated tail risk series and alternative predictors. Predictive
coe�icient estimates only use data through date  , which are then used to forecast returns
at  . The out-of-sample  is calculated as 

 where  is the out-of-sample
forecast of the  return based only on data through  , and  is the historical average
market return through  . A negative  implies that the predictor performs worse than
setting forecasts equal to the sample mean. Because of the short time series for the
variance risk premium, out-of-sample forecasts are infeasible. An asterisk (*) beside an
estimate denotes that it is statistically significant at the 5% level or better based on the
Clark and McCracken (2001) ENC-NEW test of out-of-sample predictability.

In summary, predictive regressions suggest that tail risk is positively and

signi�cantly related to market discount rates.

2.3 Tail risk and the cross-section of expected stock
returns

We next test the hypothesis that tail risk helps explain di�erences in

expected returns across stocks, consistent with the priced tail risk

hypothesis. If investors are averse to tail risk, stocks with high predictive

loadings on tail risk will be discounted more steeply and thus have higher

expected returns going forward. On the other hand, stocks with low or

negative tail risk loadings serve as e�ective hedges and therefore will have

comparatively higher prices and lower expected returns.

In line with the aggregate predictive analysis above, we estimate tail risk

sensitivities of individual stocks with regressions of the form 

 . Consistent with the intuition from aggregate tail risk

predictive regressions, stocks with high values of  are those that are most

sensitive to tail risk, and thus are deeply discounted when tail risk is high

and have high expected returns going forward. On the other hand, stocks

Long-term return −0.1 0.9 −0.2 0.8

Long-term yield −0.9 −4.6 20.6* 10.2*

Net equity expansion −0.8 −10.6 −6.6 −9.0

Stock volatility −2.5 −25.0 −28.1 −22.1

Term spread −0.6 −2.9 −7.1 7.0

Treasury-bill rate −1.3 −9.2 5.8 −14.4

R2

t t = 120

t

t + 1 R2

1 −∑t (rm,t+1 − r̂m,t+1|t)
2
/∑t (rm,t+1 − r̂m,t)

2
, r̂m,t+1|t

t + 1 t r̄m,t

t R2

Et[ri, t + 1

] = μi + βiλt

βi
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with low or negative  are good tail risk hedges because, when tail risk rises,

their prices rise contemporaneously, and their expected future returns fall.

Each month, we estimate the tail loading for each stock in regressions that

use the most recent 120 months of data.  Stocks are then sorted into quintile

portfolios based on their estimated tail risk loadings. We track average

monthly value- and equal-weighted quintile portfolio returns in a twelve-

month postformation window, reported in panel A of Table 4. Portfolio

returns are out-of-sample–there is no overlap between data used for

estimating betas and data used in the postformation performance period.

Table 4
Tail beta-sorted portfolio returns

βi
21

22

Low 2 3 4 High High-low -stat.

Panel A: Twelve-month returns

Equal-weighted

Average return 1.14 1.24 1.31 1.39 1.48 0.33 2.48

CAPM alpha 0.10 0.31 0.4 0.47 0.49 0.38 2.63

FF alpha −0.13 0.01 0.09 0.17 0.20 0.33 2.85

FF + Mom alpha 0.04 0.10 0.15 0.22 0.26 0.21 2.15

FF + Mom + Liq alpha 0.02 0.10 0.17 0.24 0.27 0.25 2.54

Value-weighted

Average return 0.86 0.99 1.03 1.14 1.21 0.35 2.15

CAPM alpha −0.17 0.05 0.12 0.20 0.18 0.35 2.10

FF alpha −0.20 −0.02 0.08 0.19 0.25 0.45 3.00

FF + Mom alpha −0.02 0.07 0.11 0.18 0.32 0.34 2.24

FF + Mom + Liq alpha −0.08 0.08 0.14 0.21 0.35 0.43 2.93

t

Panel B: One-month returns

Equal-weighted

Average return 1.14 1.24 1.28 1.4 1.45 0.31 2.12

CAPM alpha 0.10 0.31 0.37 0.48 0.47 0.37 2.52

FF alpha −0.11 0.02 0.09 0.19 0.19 0.30 2.22

FF + Mom alpha −0.06 0.06 0.11 0.22 0.24 0.29 2.14
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The table reports monthly return statistics for portfolios formed on the basis of tail risk
beta. Each month stocks are sorted into quintile portfolios based on predictive tail loadings
that are estimated from monthly data over the previous ten years. Portfolios are based on
NYSE/AMEX/NASDAQ stocks with CRSP share codes 10 and 11. Panel A reports equal- and
value-weighted average out-of-sample twelve-month holding period portfolio returns and
panel B reports out-of-sample one-month holding period portfolio returns. The table also
reports portfolio alphas from regressions of portfolio returns using the Fama-French three-
factor model as well as extended four- and five-factor models controlling for momentum
and liquidity (Pastor and Stambaugh 2003) factors. The right-most columns report results
for the high minus low zero net investment portfolio that is long quintile portfolio five and
short quintile one and associated -statistics. For twelve-month returns, -statistics use
Newey-West (1987) standard errors based on twelve lags. Stocks with prices below $5 at the
portfolio formation date are excluded.

Stocks in the highest tail risk loading quintile earn value-weighted average

annual returns 4.2% higher than stocks in the lowest quintile, with a -

statistic of 2.2 based on Newey-West standard errors using twelve lags. The

equal-weighted high minus low tail risk portfolio average return is 4.0% per

annum  . Average portfolio returns demonstrate a monotonic

pattern that is increasing in tail risk.

Next, we test if the high average return for the long/short tail risk portfolio

is robust to considering alternative priced factors. We report alphas from

regressions of portfolio returns on the three Fama-French factors, alphas

with respect to the Fama-French-Carhart four-factor momentum model,

and alphas with respect to the Fama-French-Carhart model plus the Pastor

and Stambaugh (2003) traded liquidity factor as a �fth control. Alphas of the

value-weighted high minus low tail risk portfolio are large and statistically

signi�cant for each of these models. For the three-factor model, the alpha is

5.4% per annum  . On an equal-weighted basis, the high minus low

tail risk portfolio alpha is 4.0% for the three-factor model  .

Portfolio alphas retain the same monotonicity that was observed for average

portfolio returns.

FF + Mom + Liq alpha −0.08 0.06 0.12 0.24 0.26 0.34 2.50

Value-weighted

Average return 0.84 0.96 0.98 1.18 1.20 0.36 2.00

CAPM alpha −0.19 0.03 0.08 0.25 0.18 0.37 2.08

FF alpha −0.19 −0.04 0.05 0.22 0.27 0.46 2.58

FF + Mom alpha −0.16 −0.03 0.03 0.18 0.30 0.45 2.22

FF + Mom + Liq alpha −0.21 −0.03 0.05 0.21 0.35 0.55 2.78

t t

t

(t = 2.5)

(t = 3.0)

(t = 2.9)
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Panel B reports average returns in a one-month postformation window.

These results show that short horizon portfolio returns have the same

qualitative behavior as those over longer horizons. The value-weighted

three-factor alpha for the high minus low tail risk portfolio is 5.5%

annualized  , whereas the equal-weighted three-factor alpha is

3.6% annualized  .

We also examine the robustness of tail risk's cross-section return

explanatory power to controlling for other individual stock characteristics

that are potentially associated with return tails. We test whether the return

spread between high and low tail risk portfolios is robust to controlling for

four alternative �rm characteristics. The �rst characteristic we examine is

�rm size, measured as equity market value at the time of portfolio

formation, which may be an important driver of tail risk if smaller �rms are

particularly susceptible to tail risk shocks. Next, because our tail measure is

derived from tail events among individual �rms, we explore its association

with the idiosyncratic volatility e�ect of Ang, Chen, and Xing (2006). We

measure �rm volatility as the standard deviation of daily residuals from the

Fama-French three-factor model in the month prior to portfolio formation.

The results are qualitatively unchanged if we use raw returns rather than

factor model residuals or di�erent window lengths to calculate �rms'

volatility. Because our tail risk measure captures an asymmetric downside

risk, we investigate how tail risk interacts with the downside beta of Ang,

Chen, and Xing (2006) and coskewness of Harvey and Siddique (2000).

Downside beta is estimated as the regression coe�cient of �rm returns on

market returns based only on months in which the market return was

negative, using the most recent 120 months of data prior to portfolio

formation, whereas coskewness is estimated from a regression of �rm

returns on squared market returns.

Results from independent two-way portfolio sorts are reported in Table 5.

We report monthly four-factor postformation alphas. Within each

alternative characteristic quartile, we calculate the average returns on the

high minus low tail risk portfolio and the corresponding Newey-West -

statistic with twelve lags. Results are broadly consistent with �ndings

reported thus far. Value-weighted spreads within size quartiles are above

3.6% per annum for all but the smallest stocks, are between 2.2% and 5.4%

within volatility quartiles, between 2.4% and 4.0% within downside beta

quartiles, and between 2.9% and 6.8% for coskewness quartiles.

Table 5
Double-sorted portfolio returns

(t = 2.6)

(t = 2.2)

t

Low 2 3 High High-low -stat.t
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Panel A: Firm size and tail risk beta

Equal-weighted

Small 0.10 0.16 0.26 0.15 0.05 0.37

2 −0.07 0.09 0.24 0.23 0.30 2.54

3 −0.07 0.11 0.15 0.24 0.31 2.11

Large −0.08 0.03 0.08 0.27 0.35 1.94

Value-weighted

Small 0.08 0.10 0.19 0.10 0.01 0.10

2 −0.07 0.06 0.23 0.24 0.31 2.57

3 −0.07 0.10 0.16 0.23 0.30 2.03

Large −0.14 0.01 0.09 0.20 0.34 1.69

Panel B: Idiosyncratic volatility and tail risk beta

Equal-weighted

Low IV 0.15 0.16 0.22 0.30 0.15 1.52

2 0.10 0.17 0.25 0.33 0.22 2.33

3 0.11 0.13 0.24 0.30 0.19 2.02

High IV −0.10 −0.01 0.08 0.11 0.21 2.02

Value-weighted

Low IV 0.12 0.11 0.14 0.30 0.18 1.53

2 −0.01 0.09 0.16 0.30 0.30 2.25

3 −0.05 0.07 0.18 0.30 0.36 2.32

High IV −0.17 −0.09 0.11 0.28 0.45 2.61

Panel C: Downside beta and tail risk beta

Equal-weighted

Low down beta 0.20 0.18 0.25 0.28 0.08 0.76

2 0.08 0.12 0.20 0.29 0.21 1.92

3 0.06 0.13 0.21 0.29 0.24 2.43

High down beta −0.04 0.06 0.08 0.17 0.21 1.97



The table reports monthly holding period four-factor (Fama-French and momentum)
alphas for double-sorted portfolios that are formed on the basis of tail risk loadings and
size (panel A), idiosyncratic volatility (panel B), downside beta (panel C) or coskewness
(panel D). Each month stocks are independently sorted into four quartile portfolios based
each of these characteristics (rows), and four quartiles based on predictive tail loadings
(columns). Loading are estimated from monthly data over the previous ten years. Portfolios
are based on NYSE/AMEX/NASDAQ stocks with CRSP share codes 10 and 11. The right-most
columns report results for the high minus low zero net investment portfolio that is long
quartile portfolio four and short quartile one. The portfolios are held for one year -
statistics use the Newey-West (1987) standard errors based on twelve lags. Stocks with
prices below $5 at the portfolio formation date are excluded.

2.4 Crash insurance

The preceding analysis shows that stocks with low tail risk exposure have

low average returns, consistent with the view that investors value the ability

of such stocks to hedge against �uctuations in tail risk. We next examine the

relative values of contracts explicitly designed to hedge against tail risk. We

form portfolios of individual equity put options on the basis of option

moneyness following the approach of Frazzini and Pedersen (2012).

Value-weighted

Low down beta 0.07 0.11 0.14 0.40 0.33 2.15

2 0.11 0.14 0.19 0.40 0.29 1.72

3 −0.15 0.01 0.03 0.16 0.31 2.26

High down beta −0.04 −0.04 0.25 0.16 0.20 0.94

Panel D: Coskewness and tail risk beta

Equal-weighted

Low coskew 0.00 0.33 0.40 0.40 0.40 2.91

2 0.10 0.17 0.28 0.29 0.19 1.45

3 0.01 0.06 0.12 0.18 0.17 1.24

High coskew −0.30 −0.23 −0.09 0.03 0.34 2.30

Value-weighted

Low coskew −0.17 0.30 0.39 0.41 0.57 2.43

2 −0.19 0.12 0.22 0.36 0.54 2.47

3 0.04 −0.04 0.01 0.28 0.24 1.13

High coskew −0.30 −0.22 −0.04 −0.03 0.28 1.30

t
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Moneyness is de�ned as the absolute value of the Black-Scholes delta of an

option, and the �ve portfolios are deep out-of-the-money (DOTM, |Δ| < 

0.20), out-of-the-money (OTM, 0.20 ≤ |Δ| < 0.40), at-the-money (ATM,

0.40 ≤ |Δ| < 0.60), in-the-money (ITM, 0.60 ≤ |Δ| < 0.80), and deep-in-the-

money (DITM, 0.80 ≤ |Δ|). Portfolios are rebalanced corresponding to the

monthly expiration schedule for exchange-listed options (the Saturday

immediately following the third Friday of the month). Our option sample

covers 1996 to 2010.

We compute the return of selling a put with one month to maturity on the

�rst trading day following each expiration date and holding it to the next

month's expiration. Each put position is delta hedged daily. We use the

standard put return calculation, incorporating the change in option value,

the pro�t or loss from the delta hedge, and interest on the margin account.

We recalculate our monthly tail risk measure to correspond to the expiration

schedule, so there is no timing overlap between tail risk in month  and

option portfolio returns in  . We then estimate a predictive regression of

each portfolio's return on lagged tail risk. Because of the relatively short

sample for options data, we estimate a single in-sample predictive

coe�cient for each portfolio.

Panel A of Table 6 reports predictive tail betas and average monthly returns

on delta-hedged put option portfolios. An investor that is willing to sell

crash protection in the form of DOTM puts earns a large insurance

premium–the di�erence between DOTM and DITM short put returns is

16.7% per month  . The exposure of option portfolios to tail risk is

also monotonically decreasing in moneyness. The di�erence in tail risk

coe�cients for the DOTM portfolio versus DITM is 7.2  , meaning

that a one-standard-deviation increase in tail risk predicts an increase in the

expected return spread (DOTM − DITM) of over 7% in the next month.  The

far right column reports the correlation between tail beta and portfolio alpha

across the �ve portfolios. There is a 94% correlation between exposures and

average portfolio returns.

Table 6
Moneyness-sorted short put portfolios

t

t + 1

(t = 3.6)

(t = 2.4)

24

DOTM OTM ATM ITM DITM DOTM–
DITM

-
stat.

Corr.

Panel A: Delta-hedged

Tail risk beta 7.17 4.20 2.89 1.07 0.01 7.17 2.39 –

Average return 19.46 16.64 10.21 5.31 2.80 16.66 3.55 94.10

t
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We form portfolios of individual equity put options on the basis of option moneyness
following the approach of Frazzini and Pedersen (2012) over 1996 to 2010. Moneyness is
defined as absolute value of the Black-Scholes delta of an option, and the five portfolios are
deep out-of-the-money (DOTM, |Δ|<0.20), out-of-the-money (OTM, 0.20 ≤ |Δ|<0.40), at-the-
money (ATM, 0.40 ≤ |Δ|<0.60), in-the-money (ITM, 0.60 ≤ |Δ|<0.80) and deep-in-the-money
(DITM, 0.80 ≤ |Δ|). We also report results from the di�erence between the DOTM and DITM
portfolios. Portfolio rebalancing dates and one-month holding periods correspond to the
monthly expiration schedule. We compute the return of selling an put with one month to
maturity on the first trading day following the an expiration date and holding it to the next
month's expiration. Each put position is delta-hedged daily. Tail betas are estimated from a
predictive regression of each portfolio's return on lagged tail risk (which is recalculated to
correspond to the option portfolio formation schedule and variance standardized).
Because of the relatively short sample for options data, we estimate a single in-sample
predictive coe�icient for each portfolio. The far right column reports the correlation
between tail beta and portfolio alpha across the five portfolios. Panel A reports results for
monthly returns on delta-hedged short put option portfolios. Panel B reports results for
leverage-adjusted versions of these portfolios following the procedure of Karakaya (2013).

Frazzini and Pedersen (2012) argue that much of the spread in panel A is due

to a premium that �nancially constrained investors are willing to pay to hold

implicitly levered options positions. To account for di�erences in

“embedded leverage,” we modify weights in our portfolio construction to

equalize the embedded leverage of each portfolio.  Panel B reports leverage-

adjusted average returns and tail exposures for short put portfolios, again

showing that tail risk exposures decrease monotonically with moneyness.

Our beta estimate imply that a one-standard-deviation increase in tail risk

CAPM alpha 18.50 15.88 9.74 5.01 2.53 15.96 3.43 93.91

FF alpha 18.05 15.28 9.52 4.90 2.51 15.54 3.31 94.54

FF + Mom alpha 17.87 15.21 9.51 4.96 2.62 15.25 3.18 94.36

FF + Mom + Liq
alpha

15.83 14.17 9.17 4.94 2.68 13.15 2.82 92.27

Panel B: Delta-hedged and Leverage-adjusted

Tail risk beta 0.79 0.46 0.25 0.08 0.00 0.79 2.43 –

Average return 1.63 1.57 1.28 0.99 0.56 1.07 2.43 79.15

CAPM alpha 1.55 1.49 1.22 0.94 0.50 1.05 2.29 77.79

FF alpha 1.55 1.44 1.20 0.91 0.50 1.04 2.28 80.79

FF + Mom alpha 1.54 1.43 1.22 0.93 0.54 1.00 2.07 80.51

FF + Mom + Liq alpha 1.29 1.32 1.16 0.94 0.56 0.73 1.54 65.97
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corresponds to a predicted increase in the DOTM-DITM return spread of

0.8%  in the following month.

3. Potential Mechanisms

In this section we investigate how our estimated tail risk series, which

describes tail distributions for individual �rms, may be tied to equity premia.

A variety of models can potentially generate the hypothesized association

between tail risk and risk premia. Rather than specifying a detailed model of

preferences and fundamentals, we discuss two general mechanisms that give

rise to asset pricing e�ects of �rm-level tail risk.

3.1 Power law aggregation

Power law distributions are stable under aggregation. In particular, when

random variables with power law tails are summed, the tail of the sum is

dominated by the variable with the heaviest individual tail.  Therefore, if

individual stock return tails obey a power law, the tail risk of the market

portfolio will “inherit” the tail risk of the individual stocks. This property

o�ers a means of inferring aggregate tail risk from the common tail risk of

individual stocks.

3.1.1 Tail risk and realized skewness and kurtosis

Assessing the link between our �rm-level tail risk and tail risk of the market

portfolio is a challenge because time variation in the market's tail exponent

is di�cult (if not infeasible) to estimate from the time series of market

returns alone. This is the original motivation for our panel-based estimator.

We examine the third and fourth moments for the market return

distribution. Third and fourth moments are only coarse proxies for the

market's tail exponent, but they remain useful benchmarks because they are

sensitive to movements in lower tail risk, while remaining calculable at the

monthly frequency.

We construct monthly realized skewness and kurtosis for the value-
weighted market portfolio using daily returns within each month from 1963

to 2010. To test the association between our tail risk measure and realized
higher moments of the market portfolio, we run monthly regressions of the

form  where

“Moment” is either realized skewness or kurtosis and  ranges from −24 to

(t = 2.4)
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(3)

Momentt+k = constant + b1Momentt + b2Tailt + et+k,

k
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24 months (we drop the  regressor when  ). This regression
measures the common dynamics among Moment  and tail risk after

controlling for own lags/leads of the realized moments.

Panel A of Figure 3 reports results for realized skewness in regression 3. Bars

show estimated  coe�cients for di�erent values of  , and the line plot

shows corresponding Newey-West -statistics (using twelve lags). The

results illustrate that although there is little association between tail risk and

past market skewness, rises in tail risk predict more negatively skewed

market returns in the future. This predictive coe�cient is negative for all 

 and is signi�cant after one year. Panel B reports regression results for

realized market kurtosis. Tail risk and market kurtosis tend to signi�cantly

predict each other. The estimated  coe�cients are positive for all 

indicating that relatively high levels of tail risk tend to be preceded and

followed by higher kurtosis in the market portfolio. The estimated

coe�cients are larger and more signi�cant for  . We �nd, however, that

neither market skewness nor kurtosis demonstrate predictive power for

returns in time series or cross-section tests.

Momentt k = 0

t + k
27
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k > 2

b2 k

k > 0
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Figure 3 Tail risk versus skewness and kurtosis of the market portfolio

The figure reports estimates of the monthly regression Moment

, where “Moment” is either realized

skewness (panel A) or kurtosis (panel B) of aggregate stock market returns, and  ranges
from −24 to +24 months (we drop the  regressor when  . Realized moments
are estimated from daily returns within each month. We report estimated  coe�icients for
each  (bars corresponding to le� axis) and Newey-West -statistics using twelve months of
lags (line plot corresponding to right axis).

3.1.2 Tail risk and option implied risk measures

S&P 500 index options present an alternative means of measuring aggregate

market tail risk (under the risk neutral rather than physical measure). In

Table 7, we compare our tail risk estimates to various options-based

measures of tail risk during the 15-year subsample in which options are

available. First, we compare against risk-neutral skewness and kurtosis

estimated from S&P 500 index options, following Bakshi, Kapadia, and

Madan (2003). We �nd correlations of −30% and 33%, respectively,

t + k

= constant + b1Momentt + b2Tailt + et + k

k

Momentt k = 0)

b2

k t
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indicating that when tail risk rises the risk-neutral market return

distribution also becomes more negatively skewed and more leptokurtic.

Next, we compare our tail risk time series to the slope of the implied

volatility smirk for out-of-the-money S&P 500 put options.  Our tail risk

measure has a correlation of − 17% with the smirk slope, indicating that OTM

puts become especially expensive when tail risk is high. We then calculate

the slope of the OTM put-option implied volatility smirk for all individual

equities in OptionMetrics and calculate a monthly average across stocks. Our

tail risk measure has a correlation of − 53% with the average smirk slope of

individual equity options. Finally, we �nd a correlation of 42% between tail

risk and the CBOE put/call ratio (Pan and Poteshman 2006).  With the

exception of the variance risk premium, we �nd that none of the options

variables in Table 7 demonstrates predictive power for market returns.

Table 7
Correlations with risk measures based on S&P 500 index options

The table reports monthly correlations between tail risk estimated from the cross-section
of returns on NYSE/AMEX/NASDAQ stocks, and various options-based risk measures derived
from prices of S&P 500 index options from 1996 to 2010. Below each correlation estimate
we report its -value in italics (based on Newey-West (1987) standard errors with twelve
lags). Risk-neutral skewness and kurtosis are estimated following Bakshi, Kapadia, and
Madan (2003). The slope of the implied volatility smirk for out-of-the-money S&P 500 put

28

29

(1) (2) (3) (4) (5) (6) (7)

Tail (1) 1.00

R.N. skewness (2) −0.30 1.00

0.02 –

R.N. kurtosis (3) 0.33 −0.92 1.00

0.01 <0.01 –

OTM put IV slope (4) −0.17 0.22 −0.25 1.00

(S&P 500) 0.15 0.06 0.05 –

OTM put IV slope (5) −0.53 0.49 −0.58 0.26 1.00

(individual stocks) <0.01 <0.01 <0.01 0.13 –

Put/call ratio (6) 0.42 −0.49 0.38 <0.01 −0.65 1.00

0.01 <0.01 0.01 0.97 <0.01 –

Variance risk premium (7) 0.04 0.10 −0.17 −0.10 0.22 −0.22 1.00

0.67 0.13 0.02 0.41 0.02 0.03 –

p
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options is estimated from a regression of put-implied volatility on option moneyness (strike
over spot) using options with Black-Scholes delta greater than −0.5 and one month to
maturity. We similarly calculate the implied volatility smirk for all individual stocks in
OptionMetrics and construct an equal-weighted average across stocks. The put/call ratio
measures the number of new put contracts purchased by non-market-makers relative to
new calls purchases and comes from the CBOE. The variance risk premium is the di�erence
between the squared VIX and realized variance of the S&P 500 index and comes from Hao
Zhou's Web site. Risk-neutral moments and the IV slope only use options with positive
open interest. These three measures are estimated separately for two sets of options with
maturities closest to 30 days (one set for the maturity just greater than 30 days, and one set
for the maturity just less than 30 days), then the estimates are linearly interpolated to arrive
at a daily measure with constant 30-day maturity. Finally, all daily measures are averaged
within the month to arrive at a monthly time series.

3.1.3 Tail risk dynamics within industry and size groups

The power law aggregation mechanism relating �rm tails to the market tail

builds from our speci�cation that tail risks of all assets share a common

factor as in Equation (1). To demonstrate empirical support for this

speci�cation, we split the sample of CRSP stocks into nonoverlapping

subsets and apply our cross-sectional tail risk estimator to each subset. We

then show that dynamic tail risk estimates are highly correlated across

subgroups.

Because our estimation approach requires a large cross section, we split

stocks into moderately large subsets. First, we group stocks into �ve

industries according to the SIC code classi�cation of Fama and French.

Within each industry, we calculate the cross-section lower tail estimate by

pooling daily observations within a month, as in our main tail series

construction above. Panel A of Table 8 shows that industry-level tail risks

are highly correlated over time, ranging between 57% and 87%. Panel B

conducts the same test, but instead groups stocks into equally spaced size

(market equity) quintiles each month. Time series correlations for size

quintiles range between 38% and 86%. All correlation estimates in Table 8

are highly statistically signi�cant (  .001).

Table 8
Correlation of dynamic tail risk estimates among subgroups

p < 0

(1) (2) (3) (4) (5)

Panel A: By industry

Consumer (1) 1.00

Manufacturing (2) 0.85 1.00
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The table reports time series correlation between monthly tail risk series estimated from
the cross-section of stocks in each of the five Fama-French industry SIC classifications
(panel A) and in each size quintile (panel B) for 1963 to 2010.

3.2 Tail risk shocks and the real economy

The real business-cycle literature suggests a second channel by which shifts

in �rm-level risk impact investors' marginal utility and therefore asset

prices. Bloom (2009) argues that an increase in uncertainty raises the value

of a �rm's “real options.” Because �rms face capital and labor adjustment

costs, higher uncertainty makes the option to postpone investment more

valuable. This can produce aggregate e�ects if uncertainty at the �rm-level

tends to rise and fall in unison across �rms. Bloom (2009) focuses on

uncertainty in the form of volatility, but the economic predictions of his

framework are qualitatively identical when uncertainty is measured by tail

risk.

3.2.1 Evidence supporting the uncertainty shocks channel

If asset pricing e�ects arise through a tail uncertainty shocks channel, tail

risk should manifest itself not only in returns but also in �rms' fundamental

growth rate shocks. We check this implication directly by testing for

comovement between the tail risk of �rm-level sales growth rates and tail

risk measured from stock returns. We estimate sales growth tail risk by

applying our cross-section tail estimator to the panel of quarterly sales

growth data from Compustat. To ensure a su�ciently large cross section, we

pool all reported sales data that occur within the same calendar quarter and

use data beginning in 1975.

Technology (3) 0.81 0.75 1.00

Healthcare (4) 0.67 0.58 0.69 1.00

Other (5) 0.86 0.87 0.77 0.57 1.00

Panel B: By size

Small (1) 1.00

(2) 0.71 1.00

(3) 0.59 0.77 1.00

(4) 0.47 0.66 0.76 1.00

Big (5) 0.38 0.56 0.67 0.86 1.00
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Figure 4 reports cross-correlations between stock return tail risk in quarter 

, and sales growth tail risk in quarters  to  . Despite the coarseness

of quarterly sales data, we still �nd that fundamental cash �ow tail risk

shares a signi�cant contemporaneous correlation of 23% with the stock

return tails (Newey-West -value of 0.024). Return tails are most strongly

correlated with sales growth tails one quarter ahead (31%,  ), and

remain signi�cantly correlated up to three quarters ahead. The notion that

return tail risk leads tail risk measured from sales growth is perhaps

unsurprising given the comparatively rapid response of market prices to

news and the infrequent reporting of accounting data.

Figure 4 Correlogram: Sales growth tails and stock return tails

The figure shows the percentage correlation (bars corresponding to le� axis) between the
estimated return tail series in quarter  with the sales growth tail series in quarter  for 

 and Newey-West -statistics using twelve months of lags (line plot
corresponding to right axis).

To have pricing e�ects via the uncertainty shocks channel, tail risk

measured from the cross-section ultimately must be associated with

aggregate real economic outcomes. Bloom (2009) provides a useful

framework to gauge the in�uence of uncertainty on economic activity and

shows that the evolution of uncertainty (measured by stock market

volatility) has a large in�uence on industrial production and employment.

We examine the impact of time-varying tail risk on macroeconomic

aggregates in a monthly vector autoregression (VAR) that extends Bloom

(2009) econometric model to include tail risk. In our VAR ordering, stock

market volatility is �rst, followed by tail risk, the Federal Funds Rate, log

average hourly earnings, the log consumer price index, hours, log

employment, and log industrial production (the resulting impulse responses

are robust to alternative orderings). Because our sample period coincides

t

t − 4 t + 4

p

p = 0.008

t t + j

j = − 4, … , 4 t
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largely with Bloom (2009), we estimate the VAR using monthly data from

July 1963 to June 2008 (as available from Bloom) so that we can quantify the

incremental impact of tail risk relative to volatility.

The left-hand plot in panel A of Figure 5 shows the response of industrial

production to a one-standard-deviation shock to tail risk.  It indicates that

industrial production displays an immediate decline of 0.6% within one year

of the shock, with a subsequent recovery that peaks at two years. For

comparison, the right plot in panel A shows that a volatility shock produces a

decline in industrial production of 1.4% with a similar pattern to that of tail

risk.  These are distinct e�ects, however, as tail risk and volatility are

weakly negatively correlated and included side-by-side in the VAR. Panel B

estimates the impulse response for employment. These plots indicate that a

shock to tail risk produces the same e�ect that it does for production,

declining in the �rst year by just over 0.6% and then rebounding at around

two years. Panels C and D indicate that, following a shock to tail risk,

investment displays an immediate drop of 2.5% to 4% in the subsequent

year, followed by a recovery by year three.
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Figure 5 Tail risk impulse response functions

The figure plots the estimated impact of uncertainty shocks on industrial production (panel
A), employment (panel B), gross private domestic investments (panel C) and private
nonresidential fixed investments (panel D). Within each panel, the impulse response for a
one-standard-deviation shock to tail risk on the le� and for a one-standard-deviation shock
to volatility on the right. For industrial production and employment we estimate a monthly
VAR that includes stock market volatility, tail risk, Federal Funds Rate, log average hourly
earnings, the log consumer price index, hours, log employment, and log industrial
production over the period July 1963 to June 2008. Because investment is only available
quarterly, panels C and D are for quarterly trivariate VARs that includes stock market
volatility, tail risk, and aggregate investment over the period 1963 Q3 to 2008 Q2. Because
industrial production and employment are only calculated for the manufacturing sector,
the VARs in panels A and B use tail risk estimated from the cross-section of manufacturing
firms. Dashed lines are one standard-error bands following Bloom (2009). Vertical axis is in
percent.

In summary, after controlling for the impact of the volatility shocks as

emphasized in the previous literature, we �nd that a positive shock to tail

risk precedes an immediate and prolonged contraction in economic activity

in the subsequent year. These e�ects on the real economy, coupled with the

e�ects of tail risk on expected stock returns, suggest that tail risk plays an

important role in the marginal utility of investors and in determining

equilibrium asset prices.

4. Conclusion

A measure of extreme event risk is crucial for evaluating modern theoretical

asset pricing paradigms. Estimates based on the univariate time series of

aggregate market returns are incapable of accurately tracking conditional

tail risk. We present a new dynamic tail risk measure that overcomes this

javascript:;


di�culty. It uses the cross-section of individual stock returns to estimate

conditional tail risk at each point in time.

We provide evidence that tail risk has large predictive power for aggregate

stock market returns over horizons of one month to �ve years, performing

as well as the most successful alternative predictors considered in the

literature. Furthermore, tail risk has substantial explanatory power for the

cross-section of stock and put option returns. Stocks that are e�ective tail

risk hedges earn annual three-factor alphas that are 5.4% lower than their

high tail risk counterparts.

These results can be understood from the perspective of structural models

with heavy-tailed �rm-level shock distributions that are preserved under

aggregation. In this case, common �uctuations in tail risk across �rms can

lead them to simultaneously disinvest, which impairs aggregate economic

activity. Power law aggregation and the real e�ects of uncertainty shocks

represent potential channels through which �rm-level tail risk can in�uence

asset prices.
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 This allows us to capture common fluctuations in individual firms' tails over time. This

procedure avoids having to accumulate years of tail observations from the aggregate series

in order to estimate tail risk, and therefore avoids using stale observations that carry little

information about current tail risk.

Gabaix (2009) provides a summary of aggregation properties for variables with power law

tails. In particular, power law tails are conserved under addition, so that portfolio return

tails behave like the tails of stocks in the portfolio. Further details and derivations are found

in Jessen and Mikosch (2006).

Gourio (2012) presents a theoretical model showing that shocks to aggregate tail risk

induce qualitatively similar business fluctuations as the volatility uncertainty studied by

Bloom (2009).

 These long-run risk extensions build on a large body of literature that models extreme

events with jump processes, most notably the widely used a�ine class of Du�ie, Pan, and

Singleton (2000).

 A seminal paper documenting variation in the power law tail of returns is that of Quintos,

Fan, and Phillips (2001), with additional evidence presented by Galbraith and Zernov

(2004), Werner and Upper (2004), and Wagner (2003).

 The cross-section procedure that we propose has subsequently been adopted as a

measure of systemic banking sector risk by Allen, Bali, and Tang (2012) and liquidity risk by
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 This specification is motivated by the Pickands-Balkema-de Haan limit theorem, which

states that for a wide class of heavy-tailed distributions for Ri,t+1, P(Ri,t+1 < r | Ri,t+1 < ut) will

converge to a generalized power law distribution as ut approaches the support boundary of

Ri,t+1. This limit result is operationalized by treating the power law as an exact relationship

for threshold exceedences (Embrechts et al. 1997).

Gabaix and Ibragimov (2011) propose an alternative “rank-1/2” regression approach to

estimating λ. Our λ estimates and asset pricing test results are nearly identical when we use

their estimator in place of 
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the first Kt elements of Rt. This is without loss of generality because the elements of Rt are

exchangeable from the perspective of the estimator.

 An inappropriately mild threshold will contaminate tail exponent estimates by using data

from the center of the distribution, whose behavior can vary markedly from tail data. A very

extreme threshold can result in noisy estimates resulting from too few data points.

Sophisticated methods for threshold selection have been developed (Dupuis 1999 and

Matthys and Beirlant 2000, among others), though these typically require estimation of

additional parameters and can be unstable. In light of this fact, Gabaix et al. (2006)

advocate a simple rule that fixes the u-exceedence probability at 5% for unconditional

power law estimation. We follow these authors by applying a similar simple rule in the

dynamic setting. We find very similar empirical results if we use thresholds ranging from

the first to fi�h percentile.

 These results are very similar to tail estimates based on raw returns.

 If sampling error produces too low an estimate of volatility, volatility scaling excessively

inflates returns, making them appear as tail observations when they are not. On the other

hand, if a stock experiences a tail event, this mechanically raises its measured volatility, in

which case standardization can overshrink precisely those observations that are most

informative about the tail distribution. We address this empirically by winsorizing 10% of

the highest and lowest estimated volatilities to dampen the influence of the noisiest

volatility estimates.

 The period-wise Hill approach to the dynamic power law in Section 1 naturally

accommodates changes in cross-section size over time.

 The incidence of tail events at the firm-level is fairly evenly distributed across firms. In a

large homogenous cross-section we would expect each firm to show up in the tail 5% of the

time. Over 99% of all firms experience at least 1 tail event, 86% of firms show up in the tail

more than 1% of the time; and only 8% of firms show up in the tail more than 15% of the

time. In the average month, 44.8% of available firms appear in the cross-sectional lower tail

on at least one day.

Richardson and Smith (1991), Hodrick's (1992), and Boudoukh and Richardson (1993)

(among others) have noted the inferential problems concomitant with overlapping horizon

predictive regressions. Ang and Bekaert (2007) demonstrate in a Monte Carlo study that the

standard error correction of Hodrick's (1992) provides the most conservative test statistics

relative to other commonly employed procedures, maintaining appropriate test size over

horizons as long as five years. We also find in our tests that Hodrick's correction produces

more conservative results than do Newey-West (1987) and other methods.

 We find that Goyal and Welch (2008) bootstrap standard errors, which are valid under the

Stambaugh (1999) specification, produce even stronger statistical results than those based

on the Hodrick correction.

 We thank Amit Goyal for providing the data of Goyal and Welch (2008), updated through
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2010.

 Our estimates for upper tail risk have a correlation of 81% with lower tail risk, suggesting

that tail risk dynamics are fairly symmetric. However, lower tail risk dominates upper tail

risk in bivariate predictive regressions of the market return.

 Due to the short time series for the variance risk premium, out-of-sample forecasts based

on options measures are infeasible and thus omitted.

 Estimating tail risk sensitivity using predictive regressions on levels of λ, as opposed to

contemporaneous regressions on λ's shocks, helps reduce the influence of λ's estimation

error on the estimates of tail sensitivities.

 This analysis uses all NYSE/AMEX/NASDAQ stocks with CRSP share codes 10 and 11 and

at least 36 months out of 120 with nonmissing returns. Portfolios are reconstituted each

month.

 We use data from OptionMetrics and apply data filters that include dropping all

observations for which the bid-ask spread is smaller than the minimum tick size, the bid is

zero, open interest is zero, embedded leverage is in the top or bottom 1% of the

distribution, or time value is below 5%. The time value filter controls for the American

exercise feature as discussed in Frazzini and Pedersen (2012).

 In all regressions, tail risk is first standardized to have unit variance for ease of

interpreting the estimated coe�icients.

 Equity positions can be levered as much as twenty times using out-of-the-money

options. To adjust for leverage, we follow Karakaya (2013) and scale option positions by the

elasticity of an option's price with respect to the underlying price. Because embedded

leverage also magnifies risk exposure and expected returns, deleveraged return

magnitudes are more easily compared to our earlier equity portfolio results.

 This property is employed in economic settings by Gabaix et al. (2006) and Gabaix (2009)

among others. Jessen and Mikosch (2006) provide a detailed analysis of power law

aggregation properties.

 We also analyze the association between our tail risk measure and realized moments of

individual stock returns. Tail risk has a correlation with the average monthly skewness for

all CRSP stocks of −23% (t = − 4.7) and a correlation with average stock-level kurtosis of 25%

(t = 2.5).

 We only use options with positive open interest when calculating risk neutral skewness

and kurtosis and the smirk slope. Each of these measures is estimated separately for two

sets of options with maturities closest to 30 days (one set for the maturity just greater than

30 days, and one set for the maturity just less than 30 days), then the estimates are linearly

interpolated to arrive at a measure with constant 30-day maturity. We estimate the smirk

slope in a regression of OTM put-implied volatility on option moneyness (strike over spot)

using options with Black-Scholes delta greater than −0.5 and one month to maturity. A
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more negative slope of the smirk means that OTM puts are especially expensive relative to

ATM puts.

 This ratio measures the number of new put contracts purchased by non-market-makers

relative to new calls purchases, depending in part on crash risk perceived by investors. We

compute monthly averages of daily put/call ratios from 1996 to 2010 for all option contracts

traded on the CBOE.

 Due to the quarterly nature of sales data, we are forced to use a substantially smaller

number of observations to estimate the tail risk series. We therefore define the sales

growth tail threshold as the 7.5th percentile of the cross-section distribution each year.

Quarterly stock return tails are calculated as an average of the monthly tail risk series

within each calendar quarter.

 Because industrial production and employment are only calculated for the

manufacturing sector, the VARs in panels A and B use tail risk estimated from the cross-

section of manufacturing firms. The results are nearly identical when tails are estimated

including nonmanufacturing firms.

 Volatility produces a comparatively large e�ect because of our use of the volatility

indicator constructed by Bloom (2009). It equals one when the peak of HP detrended

volatility is more than 1.65 standard deviations above the mean. A “shock” is defined as a

movement of this variable from zero to one and thus represents an extreme shi� in

volatility. If instead we use raw stock market volatility in the VAR (to be more closely

comparable to the tail risk measure that we use), the e�ect of a one-standard-deviation

volatility shock is qualitatively similar, but quantitatively much smaller, producing a decline

in IP growth of 0.4% a�er one year, whereas the e�ect of a tail risk shock is e�ectively

identical to that reported in Figure 5.

 Investment is available quarterly (and thus was omitted from Bloom's monthly analysis).

We estimate a quarterly trivariate VAR that includes stock market volatility, tail risk, and

aggregate investment. Investment is measured as either quarterly gross private domestic

or private nonresidential fixed investment (as in Cochrane 1991, 1996)
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