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Abstract

In recent years, interest-rate-contingent claims such as caps, swaptions,

bond options, captions, and mortgage-backed securities have become

increasingly popular. The valuation of these instruments is now a major

concern of both practitioners and academics.

Practitioners have tended to use di�erent models for valuing di�erent

interest-rate-derivative securities. For example, when valuing caps, they

frequently assume that the forward interest rate is lognormal and use

Black’s (1976) model for valuing options on commodity futures. The

volatility of the forward rate is assumed to be a decreasing function of the

time to maturity of the forward contract. When valuing European bond

options and swaptions, practitioners often also use Black’s (1976) model.

However, in this case, forward bond prices rather than forward interest rates

are assumed to be lognormal.

Using di�erent models in di�erent situations has a number of

disadvantages. First, there is no easy way of making the volatility

parameters in one model consistent with those in another model. Second, it

is di�cult to aggregate exposures across di�erent interest-rate-dependent

securities. For example, it is di�cult to determine the extent to which the

volatility exposure of a swaption can be o�set by a position in caps. Finally,

it is di�cult to value nonstandard securities.

This article shows that the one-state-variable interest-rate models of

Vasicek (1977) and Cox, Ingersoll, and Ross (1985b) can be extended so

that they are consistent with both the current term structure of interest

rates and either the current volatilities of all spot interest rates or the

current volatilities of all forward interest rates. The extended Vasicek

model is shown to be very tractable analytically. The article compares

option prices obtained using the extended Vasicek model with those

obtained using a number of other models.
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Several models of the term structure have been proposed in the academic

literature. Examples are Brennan and Schwartz (1979, 1982), Courtadon

(1982), Cox, Ingersoll, and Ross (1985b), Dothan (1978), Langetieg (1980),

Longsta� (1989), Richard (1979), and Vasicek (1977). All these models have

the advantage that they can be used to value all interest-rate-contingent

claims in a consistent way. Their major disadvantages are that they involve

several unobservable parameters and do not provide a perfect �t to the

initial term structure of interest rates.

Ho and Lee (1986) pioneered a new approach by showing how an interest-

rate model can be designed so that it is automatically consistent with any

speci�ed initial term structure. Their work has been extended by a number of

researchers, including Black, Derman, and Toy (1990), Dybvig (1988), and

Milne and Turnbull (1989). Heath, Jarrow, and Morton (1987) present a

general multifactor interest-rate model consistent with the existing term

structure of interest rates and any speci�ed volatility structure. Their model

provides important theoretical insights, but in its most general form has the

disadvantage that it is computationally quite time consuming.

In this paper, we present two one-state variable models of the shortterm

interest rate. Both are consistent with both the current term structure of

interest rates and the current volatilities of all interest rates. In addition, the

volatility of the short-term interest rate can be a function of time. The user

of the models can specify either the current volatilities of spot interest rates

(which will be referred to as the term structure of spot rate volatilities) or the

current volatilities of forward interest rates (which will be referred to as the

term structure of forward rate volatilities). The �rst model is an extension of

Vasicek (1977). The second model is an extension of Cox, Ingersoll, and Ross

(1985b).

The main contribution of this paper is to show how the process followed by

the short-term interest rate in the two models can be deduced from the term

structure of interest rates and the term structure of spot or forward interest-

rate volatilities. The parameters of the process can be determined

analytically in the case of the extended Vasicek model, and numerically in

the case of the extended Cox, Ingersoll, and Ross (CIR) model. Once the

short-term interest rate process has been obtained, either model can be used

to value any interest-rate contingent claim. European bond options can be

valued analytically when the extended Vasicek model is used.

The analytic tractability of the extended Vasicek model makes it very

appealing as a practical tool. It is therefore of interest to test whether the

option prices given by this model are similar to those given by other models.

In this paper we compare the extended Vasicek model with the one-factor

CIR model and with two di�erent two-factor models. The results are

encouraging. They suggest that, if two models are �tted to the same initial
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term structure of interest rates, the same term structure of interest-rate

volatilities, and the same data on the expected future instantaneous

standard deviation of the short rate, the di�erences between the option

prices produced by the models are small.

The rest of this paper is organized as follows. In Section 1, the properties of

the Vasicek and CIR models are outlined. In Sections 2 and 3, extensions of

the two models are developed. In Section 4, the way in which market data

can be used to estimate the unknown functions in the models is discussed. In

Section 5, the bond option and cap prices calculated using the extended

Vasicek model are compared with their true values when interest rates are

assumed to follow the one-factor CIR model. In Section 6, bond option prices

calculated using the extended Vasicek model are compared with the true

prices when interest rates are assumed to follow two di�erent two-factor

models. Conclusions are in Section 7.

1. The Vasicek and CIR Models

A number of authors have proposed one-state-variable models of the term
structure in which the short-term interest rate,  follows a mean-reverting

process of the form  where  and  are positive

constants and  is a Wiener process. In these models, the interest rate,  is
pulled toward a level  at rate  Superimposed upon this “pull” is a random

term with variance  per unit time.

The situations where  and  are of particular interest because

they lead to models that are analytically tractable. The  case was �rst

considered by Vasicek (1977), who derived an analytic solution for the price

of a discount bond. Jamshidian (1989) showed that, for this value of  it is

also possible to derive relatively simple analytic solutions for the prices of

European call and put options on both discount bonds and coupon-bearing

bonds. One drawback of assuming  is that the short-term interest rate, 

 can become negative. CIR consider the alternative  In this case, 

can, in some circumstances, become zero but it can never become negative.

CIR derive analytic solutions for the prices of both discount bonds and

European call options on discount bonds.

It is reasonable to conjecture that in some situations the market’s

expectations about future interest rates involve time-dependent parameters.

In other words, the drift rates and volatility of  may be functions of time as

r,

(1)

dr = a(b − r)dt + σrβdz,
a,b,σ, β

dz r,

b a.

σ2r2β

β = 0 β = 0.5

β = 0

β,

β = 0

r, β = 0.5. r

r
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well as being functions of  and other state variables. The time dependence

can arise from the cyclical nature of the economy, expectations concerning

the future impact of monetary policies, and expected trends in other

macroeconomic variables.

In this article we extend the model in (1) to re�ect this time dependence. We
add a time-dependent drift,  to the process for  and allow both the
reversion rate,  and the volatility factor,  to be functions of time. This

leads to the following model for 

This can be regarded as a model in which a drift rate,  is imposed on a
variable that would otherwise tend to revert to a constant level  Since (2)

can be written as  it can also be

regarded as a model in which the reversion level is a function, 
of time. We will examine the situations where  and  The 
case is an extension of Vasicek’s model; the  case is an extension of
the CIR model. We will show that when appropriate assumptions are made
about the market price of interest-rate risk, the model can be �tted to the
term structure of interest rates and the term structure of spot or forward

rate volatilities.

As shown by Dybvig (1988) and Jamshidian (1988), the continuous time

equivalent of the Ho and Lee (1986) model is

This is the particular case of (2), where  and  is constant.

If the market price of interest-rate risk is a function of time,  can be

chosen so that the model �ts the initial-term structure of interest rates. The

model has the disadvantage that it incorporates no mean reversion; the

instantaneous standard deviations of all spot and forward rates are the same.

The continuous time equivalent of the Black, Derman, and Toy (1990) model

can be shown to be

In this model log  is mean reverting. The function  is chosen to make the

model consistent with the term structure of spot rate volatilities and may

r

θ(t), r,

a, σ,

r :
(2)

dr = [θ(t) + a(t)(b − r)] dt + σ(t)rβ dz.

θ(t),

b.

dr = a(t)[θ(t)/a(t) + b − r] dt + σ(t)rβ dz,

θ(t)/a(t) + b,

β = 0 β = 0.5. β = 0

β = 0.5

dr = θ(t) dt + σ dz.

β = 0, a(t) = 0, σ(t)

θ(t)

d(log r) = [θ(t) + (σ′(t)/σ(t)) log r] dt + σ(t) dz.

r σ(t)
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not give reasonable values for the future short rate volatility. The model has

the disadvantage that neither bond prices nor European bond option prices

can be determined analytically.

2. The Extended Vasicek Model

Our proposed extension of Vasicek’s model is given by (2) with 

We will assume that the market price of interest-rate risk is a function of
time,  that is bounded in any interval  From Cox, Inger-soll, and

Ross (1985a), this means that the price,  of any contingent claim

dependent on  must satisfy

where

The price of a discount bond that pays o� $1 at time  is the solution to (4)
that satis�es the boundary condition  when  Consider the

function

This satis�es (4) and the boundary condition when

 and  with

β = 0 :

(3)

dr = [θ(t) + a(t)(b − r)] dt + σ(t) dz.

λ(t), (0, τ).1

f,

r
(4)

ft + [ϕ(t) − a(t)r] fr + 1
2 σ(t)2frr − rf = 0,

ϕ(t) = a(t)b + θ(t) − λ(t)σ(t).

T

f = 1 t = T .

(5)

f = A(t,T )e−B(t,T )r.

(6)

At − ϕ(t)AB + 1
2 σ(t)2AB2 = 0

(7)

Bt − a(t)B + 1 = 0,

(8)

A(T ,T ) = 1; B(T ,T ) = 0.

javascript:;
javascript:;


It follows that if (6) and (7) are solved subject to the boundary conditions in
(8), Equation (5) provides the price of a discount bond maturing at time 
Solving (6) and (7) for the situation where  and  are constant

leads to the Vasicek bond-pricing formula:

The function,  in the extended model should be chosen to re�ect the

current and future volatilities of the short-term interest rate,  As will be

shown later,  and  are de�ned by  the current term

structure of interest rates, and the current term structure of spot or forward

interest-rate volatilities. The �rst step in the analysis is therefore to

determine  and  in terms of  and 

Di�erentiating (6) and (7) with respect to  we obtain

Eliminating  from (7) and (10) gives

Eliminating  from (6) and (9) yields

The boundary conditions for (11) and (12) are the known values of 
and  and  The solutions to (11) and (12)

T .

a(t),ϕ(t) σ(t)

B(t,T ) = (1 − e−a(T−t))/a,

A(t,T ) = exp [
(B(t,T ) − T + t)(aϕ − σ2/2)

a2
−

σ2B(t,T )

4a
].

σ(t),

r.

A(0,T ) B(0,T ) σ(0),

a(t),ϕ(t),A(t,T ), B(t,T ) A(0,T ),B(0,T ),

σ(t).

T ,

(9)

AtT − ϕ(t)[ATB + ABT ] + σ(t)2[ATB
2 + 2ABBT ]/2 = 0,

(10)

BtT − a(t)BT = 0.

a(t)
(11)

BtBT − BBtT + BT = 0.

ϕ(t)

(12)

ABAtT − BAtAT − AAtBT + σ(t)2A2B2BT/2 = 0.

A(0,T )

B(0,T ),A(T ,T ) = 1, B(T ,T ) = 0.



that satisfy these boundary conditions are

 where 

 Substituting into (6) and (7), we obtain

We now move on to discuss option valuation under the extended Vasicek
model. De�ne  as the price at time  of a discount bond maturing

at time  From the above analysis,

Using Ito’s lemma, the volatility of  is  Since this is

independent of  the distribution of a bond price at any given time

conditional on its price at an earlier time must be lognormal.

Consider a European call option on a discount bond with exercise price 
Suppose that the current time is  the option expires at time  and the bond
expires at time  The call option can be regarded as an option to

exchange  units of a discount bond maturing at time  for one unit of a
discount bond maturing at time  De�ne  and  as the volatilities

at time  of the prices of discount bonds maturing at times  and 
respectively, and  as the instantaneous correlation between the two

bond prices. From the lognormal property mentioned above and the results
in Merton (1973), it follows that the option price,  is given by

(13)

B(t,T ) =
B(0,T ) − B(0, t)

∂B(0, t)/∂t
,

(14)

∗35lÂ(t,  T ) = Â(0,  T ) − Â(0,  t) − B(t,  T )
∂Â(0,  t)

∂t

−
1
2
[B(t,  T )

∂B(0,  t)

∂t
]

2

∫
t

0
[

σ(τ)

∂B(0,  τ)/∂τ
]

2

 dτ,

Â(t,T ) = log[A(t,T )].

(15)

a(t) = −
∂ 2B(0, t)/∂t2

∂B(0, t)/∂t
,

(16)

ϕ(t) = −a(t)
∂Â(0, t)

∂t
−

∂ 2Â(0, t)

∂t2

+[
∂B(0, t)

∂t
]

2

∫
t

0
[

σ(τ)

∂B(0, τ)/∂τ
]

2

dτ.

P(r, t1,t2) t1

t2.
P(r, t1, t2) = A(t1, t2)e−B(t1. t2)r.

P(r, t1, t2) σ(t1)B(t1, t2).

r,

X.

t, T ,

s(s ≥ T ≥ t).

X T

s. α1(τ) α2(τ)

τ T s,

ρ(τ)

C,
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 where

 and  is the

cumulative normal distribution function. Since we are using a one-factor

model,  Furthermore,

Hence,

From (13) this becomes

Equations (17) and (19) provide a simple analytic solution for European call
option prices. European put option prices can be obtained using put–call

parity. In the case where  and  are constant,

(17)

C = P(r, t, s)N(h) − XP(r, t,T )N(h − σP ),

(18)

h =
1

σP

log
P(r, t, s)

P(r, t,T )X
+

σP

2
,

σ2
P = ∫

T

t

[α1(τ)2 − 2ρ(τ)α1(τ)α2(τ) + α2(τ)2] dτ,

N(⋅)

ρ = 1.

α1(τ) = σ(τ)B(τ, s),

α2(τ) = σ(τ)B(τ,T ).

σ2
P = ∫

T

t

σ(τ)2[B(τ, s) − B(τ,T )]2 dτ.

(19)

σ2
P = [B(0, s) − B(0,T )]2 ∫

T

t

[
σ(τ)

∂B(0, τ)/∂τ
]

2

dτ.

a σ

B(τ, s) = (1 − e−a(s−τ))/a,

B(τ,T ) = (1 − e−a(T−τ))/a,



and (19) becomes  where

This is the result in Jamshidian (1989). It is interesting to note that

Jamshidian’s result does not depend on  and  being constant.

To value European options on coupon-bearing bonds, we note [similarly to
Jamshidian (1989)] that since all bond prices are decreasing functions of 

an option on a portfolio of discount bonds is equivalent to a portfolio of
options on the discount bonds with appropriate exercise prices.  Consider a

European call option with exercise price  and maturity  on a coupon-
bearing bond that pays o�  at a time  The option will be

exercised when  where  is the solution to

The payo� of the option is

This is the same as  where

The option on the coupon-bearing bond is therefore the sum of  options on

discount bonds with the exercise price of the  th option being 

American bond options and other interest-rate-contingent claims can be

valued by �rst calculating  and  from (15) and (16), and then using

numerical procedures to solve the di�erential equation in (4) subject to the

appropriate boundary conditions. One approach that can be used is described

in Hull and White (1990).

3. The Extended CIR Model

σP = v(t,T )(1 − e−a(s−T ))/a,

v(t,T )2 = σ2(1 − e−2a(T−t))/2a.

θ(t) λ(t)

r,

2

X T

ci si > T (1 ≤ i ≤ n).

r(T ) < r∗, r∗

n

∑
i=1

ciP(r∗,T , si) = X.

max[0,
n

∑
i=1

ciP(r,T , st) − X].

n

∑
i=1

ci max[0,P(r,T , si) − Xi],
Xi = P(r∗,T , si).

n

i Xi.

a(t) ϕ(t)
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Our proposed extension of the CIR model is given by (2) with 

We assume that the market price of interest-rate risk is  for some

function  of time bounded in any interval 

The di�erential equation that must be satis�ed by the price,  of any claim

contingent on  is  where

 and

Again, we consider the function

This satis�es (20) when  and

If  and  are the solutions to the ordinary di�erential equations (22) and
(23) subject to the boundary conditions  and 

Equation (21) gives the price at time  of a discount bond maturing at time 
Solving (22) and (23) for the situation where  and  are

constants leads to the CIR bond-pricing formula:

β = 0.5 :

dr = [θ(t) + a(t)(b − r)] dt + σ(t)√r dz.

λ(t)√r

λ (0, τ).3

f,

r
(20)

ft + [ϕ(t) − ψ(t)r]fr + 1
2 σ(t)2rfrr − rf = 0,

ϕ(t) = a(t)b + θ(t) ψ(t) = a(t) + λ(t)σ(t).

(21)

f = A(t,T )e−B(t,T )r.

(22)

At − ϕ(t)AB = 0

(23)

Bt − ψ(t)B − 1
2 σ(t)2B2 + 1 = 0.

A B

A(T ,T ) = 1 B(T ,T ) = 0,

t T .

ϕ(t),ψ(t), σ(t)
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 where

The function  in the extended model should be chosen to re�ect the

current and future volatilities of the short-term interest rate. As in the case

of the extended Vasicek model,  and  can be determined from 

 the current term structure of interest rates and the current term

structure of interest-rate volatilities. These, together with the conditions 

 and  are the boundary conditions for determining 

 and  from (22) and (23).

Di�erentiating (23) with respect to  and eliminating  we obtain

This equation can be solved using �nite di�erence methods. The function 
 can then be obtained from (23). The solution to (22) is

Since  can be obtained iteratively from

It does not appear to be possible to obtain European option prices

analytically except when  and  are constant. All option prices must

(24)

B(t,T ) =
2(eγ(T−t) − 1)

(γ + ψ)(eγ(T−t) − 1) + 2γ
,

(25)

A(t,T ) = [
2γe(γ+ψ)(T−t)/2

(γ + ψ)(eγ(T−t) − 1) + 2γ
]

2ϕ/σ2

, γ = √(ψ2 + 2σ2)

σ(t)

A(0,T ) B(0,T )

σ(0),

A(T ,T ) = 1 B(T ,T ) = 0,

A(t,T ) B(t,T )

T ψ(t),

(26)

BtBT − BBtT + BT + σ(t)2B2BT/2 = 0.

ψ(t)

(27)

A(t,T ) = A(0,T ) exp [∫
t

0
ϕ(s)B(s,T ) ds].

A(T ,T ) = 1,ϕ(t)

∫
T

0
ϕ(s)B(s,T ) ds = − logA(0,T ).

ϕ,ψ, σ



therefore be computed using numerical procedures, such as those in Hull

and White (1990).

4. Fitting the Models to Market Data

In order to apply the models it is necessary to estimate the functions 
and  The Appendix derives results showing how the  function

is related to the term structure of spot and forward rate volatilities.
Historical data can be used in conjunction with these results to estimate this

function.  can be calculated from  and the current term
structure of interest rates using the bond-pricing equation

 where  is the short-term interest rate

at time zero.

An alternative approach to using historical data is to infer  and 

 from the term structure of interest rates and the prices of options.

Caps are actively traded options that are particularly convenient for this

purpose. In the case of the extended Vasicek model they allow  to be

implied directly in a relatively straightforward way.

An interesting question is whether the functions  and 

estimated at some time  are the same as those estimated at another time 

 In other words, does the same model describe the term

structure of interest rates and the term structure of interest-rate volatilities

at two di�erent times? This will be the subject of future empirical research.

If it is found that the functions  and  change signi�cantly over

time, it would be tempting to dismiss the model as being a “throw-away” of

no practical value. However, this would be a mistake. It is important to

distinguish between the goal of developing a model that adequately

describes term-structure movements and the goal of developing a model

that adequately values most of the interest-rate-contingent claims that are

encountered in practice. It is quite possible that a two- or three-state

variable model is necessary to achieve the �rst goal.  Later in this paper we

will present evidence supporting the argument that the extended Vasicek

one-state-variable model achieves the second goal.

In this context it is useful to draw an analogy between the models used to

describe stock-price behavior and our proposed model for interest rates. The

usual model of stock-price behavior is the one-factor geometric Brownian

motion model. This leads to the Black and Scholes (1973) stock-option-

pricing model, which has stood the test of time and appears to be adequate

A(0,T )

B(0,T ). B(0,T )

A(0,T ) B(0,T )

P(r(0), 0,T ) = A(0,T )e−B(0,T )r(0),
r(0)

A(0,T )

B(0,T )

B(0,T )
4

A(t,T ) B(t,T )

τ1

τ2(τ1, τ2 < t < T ).

A(t,T ) B(t,T )

5
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for most purposes. Since stock-price volatilities are in practice stochastic,

we cannot claim that a one-factor model perfectly represents stock-price

behavior. Indeed, practitioners, when they use the Black–Scholes model,

frequently adjust the value of the volatility parameter to re�ect current

market conditions. The justi�cation for the Black–Scholes model is that,

when �tted as well as possible to current market data, it gives similar option

prices to more complicated two-state variable models.  Our justi�cation of

the one-factor models we have presented here will be similar.

Another interesting issue is whether the choice of the  function a�ects

the shape of the current term structure of interest-rate volatilities. Suppose

that  is the yield at time  on a discount bond maturing at time 

Ito’s lemma shows that the volatility of  in the general model of Equation

(2) is  In the extended Vasicek model  is

independent of  The function  therefore a�ects all discount-bond

yield volatilities equally and has no e�ect on the shape of the term structure

of volatilities. When  the shape of the term structure of volatilities is

a�ected by  to the extent that  is a�ected by the path followed by 

between  and 

5. Comparisons of One-Factor Models

Of the two models proposed in this article, the extended Vasicek model is

particularly attractive because of its analytic tractability. A key question is

whether it gives similar prices to other models when  and  are

�tted to the initial-term structure of interest rates and the initial-term

structure of interest-rate volatilities, and  is chosen to match the

expected future instantaneous standard deviation of the short rate. In this

section, we compare the bond-option prices and cap prices produced by the

extended Vasicek model with those produced by the original one-factor CIR

model. We also calculate volatilities implied by these prices when Black’s

model is used.

Assume that  and  are the parameters of the CIR model and that this
model describes the true evolution of the term structure. This means that the

 and  functions that would be estimated for the extended
Vasicek model from historical data are

where  The complete  and  functions for the extended

6

7

σ(t)

R(r, t,T ) t T .

R

σ(t) rβ ∂R/∂r. (β = 0),∂R/∂r

σ(t). σ(t)

β ≠ 0,

σ(t) ∂R/∂r σ

t T .8

A(0,T ) B(0,T )

σ(t)

ϕ,ψ, σ

A(0,T ) B(0,T )

(28)

A(0,T ) = [
2γe(γ+ψ)T/2

(γ + ψ)(eγT − 1) + 2γ
]

2ϕ/σ2

,

(29)

B(0,T ) =
2(eγT − 1)

(γ + ψ)(eγT − 1) + 2γ
,

γ = √ψ2 + 2σ2. A B
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Vasicek model can be calculated from  and  using (13) and
(14). Equations (17) and (19) can be used to value European options on

discount bonds. The analytic results in Cox, Ingersoll, and Ross (1985b) can
be used to obtain the true European option prices.

The parameter values chosen were  and  The

initial short-term interest rate was assumed to be 10% per annum. For the

extended Vasicek model,  was set equal to the constant  This

ensured that the initial short-term interest-rate volatility equaled that in

the CIR model.

5.1 Bond options

Table 1 shows the prices given by the two models for European call options

on a �ve-year bond that has a face value of $100 and pays a coupon of 10%

per annum semiannually.  It can be seen that the models give very similar

prices for a range of di�erent exercise prices and maturity dates. The biggest

percentage di�erences are for deep-out-of-the money options. The

extended Vasicek model gives higher prices than CIR for these options. This

is because very low interest rates (and, therefore, very high bond prices)

have a greater chance of occurring in the extended Vasicek model.

Table 1
Prices of call options on a 5-year bond

A(0,T ) B(0,T )

σ = 0.06,ϕ = 0.02, ψ = 0.2.

σ(t) 0.06√0.1.

9

Option maturity
(years)

Model Exercise price

95.0 97.5 100.0 102.5 105.0

0.5 Ext
Vas

4.27
(4.50)

2.30
(4.51)

0.94
(4.51)

0.27
(4.52)

0.05
(4.52)

CIR 4.30
(4.73)

2.32
(4.63)

0.94
(4.52)

0.25
(4.40)

0.04
(4.28)

1.0 Ext
Vas

4.28
(4.05)

2.51
(4.05)

1.23
(4.05)

0.50
(4.06)

0.16
(4.06)

CIR 4.32
(4.27)

2.54
(4.17)

1.24
(4.06)

0.46
(3.94)

0.13
(3.82)

1.5 Ext
Vas

4.20
(3.59)

2.54
(3.59)

1.33
(3.60)

0.59
(3.60)

0.22
(3.60)

CIR 4.25
(3.81)

2.59
(3.71)

1.33
(3.60)

0.55
(3.49)

0.17
(3.37)

2.0 Ext
Vas

4.06
(3.13)

2.48
(3.13)

1.31
(3.14)

0.58
(3.14)

0.22
(3.14)
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The bond has a face value of $100 and a coupon of 10% per annum paid semiannually.
Current short-term interest rate is 10% per annum. Interest rates are assumed to follow the
original CIR model with  and  The extended Vasicek (Ext Vas)
model is chosen to fit the initial term structure of interest rates and the initial term
structure of interest-rate volatilites. Numbers in parentheses are the forward bond price
volatilities (% per annum) implied from the option prices when Blackʼs model is used.

Since the Black’s model is frequently used by practitioners to value bond

options, it is interesting to compare it with the two models.  The numbers

in parentheses in Table 1 are the forward bond-price volatilities implied by

the option prices when Black’s model is used. It will be noted that the

implied volatilities decline dramatically as the time to expiration of the

option increases. In the limit, when the expiration date of the option equals

the maturity date of the bond, the implied volatility is zero. For the extended

Vasicek model, implied volatilities are roughly constant across di�erent

exercise prices. This is because the bond-price distributions are

approximately lognormal.  Under CIR, the implied volatilities are a

decreasing function of the exercise price. If the same volatility is used in

Black’s model for all bond options with a certain expiration date, there will

be a tendency under a CIR-type economy for in-the-money options to be

underpriced and out-of-the-money options to be overpriced.

5.2 Interest-rate caps

Consider an option that caps the interest rate on $1 at  between times 

and  The payo� from the option at time  is  where 

 and  is the actual interest rate at time  for the time period 
(Both  and  are assumed to be compounded once during the time

period.)

CIR 4.12
(3.35)

2.52
(3.25)

1.31
(3.14)

0.54
(3.03)

0.17
(2.91)

3.0 Ext
Vas

3.68
(2.18)

2.16
(2.19)

1.05
(2.19)

0.40
(2.19)

0.12
(2.19)

CIR 3.73
(2.39)

2.21
(2.20)

1.05
(2.19)

0.36
(2.08)

0.08
(1.96)

4.0 Ext
Vas

3.31
(1.16)

1.74
(1.16)

0.59
(1.16)

0.11
(1.16)

0.01
(1.16)

CIR 3.32
(1.34)

1.77
(1.26)

0.60
(1.16)

0.08
(1.05)

0.00
(0.89)

σ = 0.06,ϕ = 0.02, ψ = 0.2.
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11

Rx t1

t2. t2

Δtmax(R − Rx, 0),

Δt = t2 − t1 R t1

(t1, t2). R Rx
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The discounted value of this payo� is equivalent to

 at time  Since 

is the value at time  of a bond maturing at time  this expression shows
that the option can be regarded as  European puts with exercise

price  and expiration date  on a $1 face value discount bond
maturing at time  More generally, an interest rate cap is a portfolio of

European puts on discount bonds.

Table 2 shows the prices given by the two models for caps on the risk-free

interest rate when the principal is $100. Again, we see that the prices are very

close for a range of di�erent cap rates and maturities. The percentage

di�erences between the prices are greatest for deep-out-of-the-money

caps. CIR gives higher prices than extended Vasicek for these caps. This is

because very high interest rates have a greater chance of occurring under

CIR.

Table 2
Prices of caps on the risk-free interest rate

(1 + RxΔt) max [
1

1 + RxΔt
−

1

1 + RΔt
, 0],

t1. 1/(1 + RΔt)

t1 t2,

1 + RxΔt

1/(1 + RxΔt) t1

t2.

Life of cap
(years)

Model Cap rate (% per annum)

8.0 9.0 10.0 11.0 12.0

1.0 Ext
Vas

2.10
(19.68)

1.21
(18.63)

0.41
(17.73)

0.10
(16.94)

0.02
(16.24)

CIR 2.09
(18.56)

1.20
(18.11)

0.41
(17.72)

0.10
(17.36)

0.03
(17.04)

2.0 Ext
Vas

4.05
(18.42)

2.47
(17.59)

1.13
(16.81)

0.45
(16.04)

0.16
(15.27)

CIR 4.03
(17.30)

2.45
(17.08)

1.13
(16.80)

0.47
(16.46)

0.19
(16.07)

3.0 Ext
Vas

5.86
(17.42)

3.70
(16.70)

1.89
(15.99)

0.87
(15.25)

0.37
(14.48)

CIR 5.82
(16.32)

3.66
(16.20)

1.89
(16.00)

0.91
(15.66)

0.43
(15.26)

4.0 Ext
Vas

7.52
(16.57)

4.85
(15.92)

2.62
(15.28)

1.30
(14.56)

0.61
(13.79)

CIR 7.44
(15.49)

4.79
(15.44)

2.63
(15.28)

1.36
(14.97)

0.69
(14.56)
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The principal is $100, interest payments are made every 6 months, and the cap rate is
compounded semiannually. The current short term interest rate is 10% per annum. Interest
rates are assumed to follow the original CIR model with  and 
The extended Vasicek (Ext Vas) model is chosen to fit the initial term structure of interest
rates and the initial term structure of interest-rate volatilites. The numbers in parentheses
are the forward rate volatilities implied by the cap prices when Blackʼs model is used. The
same volatility is applied to all forward interest rates for the purposes of the calculations
underlying this table.

Practitioners frequently use Black’s (1976) model for valuing caps. The

numbers in parentheses in Table 2 show the forward rate volatilities implied

by the cap prices when Black’s model is used. It can be seen that the implied

volatilities decrease as the life of the cap increases for both the extended

Vasicek and CIR models. This is a re�ection of the fact that the mean

reversion of interest rates causes the volatility of a forward rate to decrease

as the maturity of the forward contract increases. Implied volatilities also

decrease as the cap rate increases for both models. This means that, if the

same volatility is used for all caps with a certain life, there will be a tendency

for Black’s model to underprice in-the-money caps and overprice out-of-

the-money caps.

6. Comparison with Two-Factor Models

In this section we test how well the extended Vasicek model can duplicate the
bond option prices given by a two-factor model. We consider two di�erent

models. The �rst is a two-factor Vasicek model where the risk-neutral

process for  is

We choose  This means that  equals the long-term rate’s
instantaneous standard deviation. The second model is a two-factor CIR

5.0 Ext
Vas

9.03
(15.82)

5.90
(15.24)

3.31
(14.64)

1.72
(13.95)

0.84
(13.19)

CIR 8.92
(14.76)

5.83
(14.77)

3.32
(14.65)

1.80
(14.36)

0.95
(13.95)

σ = 0.06,ϕ = 0.02, ψ = 0.2.

r
(30)

r = x1 + x2, dxi = (ϕi − aixi)dt + σi dzi, i = 1, 2.

ϕ2 = a2 = 0. σ2
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model where the risk-neutral process for  is

These types of models were analyzed by Langetieg (1980). In both cases we

assume zero correlation between  and 

Discount bond prices for both models are given by

 where

denotes the price of a bond under the corresponding constant parameter
one-factor model when the short-term rate is  When the extended

Vasicek model is �tted to the two-factor Vasicek model

and

When it is �tted to the two-factor CIR model  and

In both cases the prices of European call options on discount bonds can be

calculated using (17) and (19). We assume that  is constant.

For the two-factor Vasicek model the prices of European call options on
discount bonds are given by (17) with

r

(31)

r = x1 + x2, dxi = (ϕi − ψixi) dt + σi√xi dzi, i = 1, 2.

dz1 dz2.

P(r, t,T ) = P1(x1, t,T )P2(x2, t,T ), Pi(xi, t,T ) = Ai(t,T )e−Bi(t,T )xi

xi.

σ(0) = √(σ2
1 + σ2

2)

σ(0)B(0,T ) = √[σ2
1B1(0,T )2 + σ2

2B2(0,T )2].

σ(0) = √(σ2
1x1 + σ2

2x2)

σ(0)B(0,T ) = √[σ2
1x1B1(0,T )2 + σ2

2x2B2(0,T )2].

σ(t)

12
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 where

To compute option prices under the two-factor CIR model, we used Monte

Carlo simulation in conjunction with the antithetic variable technique. Each

price was based on a total of 40,000 runs and the maximum standard error

was 0.0043.

Table 3
Values of European call options on a five-year discount bond with a face value of $100

Interest rates are assumed to follow the two-factor Vasicek model described by Equation
(30). The parameter values are 
and the initial values of both  and  are 0.05. The extended Vasicek (Ext Vas) model is
chosen to fit the initial term structure of interest rates and the initial term structure of
interest-rate volatilites. The exercise price is expressed as a proportion of the forward bond
price.

The results are shown in Tables 3 and 4. The extended Vasicek model

produces prices that are very close to those of the other models. Other tests

similar to those reported here have been carried out. In all cases we �nd that

σ2
P = [v1(t,T )

1 − e−a1(s−T )

a1
]

2

+ [v2(t,T )
1 − e−a2(s−T )

a2
]

2

,

vi(t,T )2 =
σ2
i (1 − e−2ai(T−t))

2ai
, i = 1, 2.

Option maturity (years) Model Exercise price

0.96 0.98 1.00 1.02 1.04

1.0 Ext Vas 2.80 1.93 1.24 0.74 0.40

Two-factor Vas 2.80 1.93 1.24 0.73 0.40

2.0 Ext Vas 2.86 2.00 1.32 0.81 0.46

Two-factor Vas 2.85 1.99 1.31 0.80 0.46

3.0 Ext Vas 2.69 1.79 1.08 0.59 0.29

Two-factor Vas 2.69 1.78 1.07 0.58 0.28

4.0 Ext Vas 2.47 1.41 0.63 0.20 0.04

Two-factor Vas 2.47 1.40 0.62 0.20 0.04

ϕ1 = 0.005,a1 = 0.01,σ1 = 0.01,σ2 = 0.01,ϕ2 = 0,a2 = 0,

x1 x2
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the extended Vasicek model provides a good analytic approximation to other

more complicated models.

7. Conclusions

This paper has shown that the Vasicek and CIR interest-rate models can be

extended so that they are consistent with both the current-term structure of

spot or forward interest rates and the current-term structure of interest-

rate volatilities. In the case of the extension to Vasicek’s model, the

parameters of the process followed by the shortterm interest rate and

European bond option prices can be determined analytically. This makes the

model very attractive as a practical tool.

Table 4
Values of European call options on a five-year discount bond with a face value of $100

Interest rates are assumed to follow the two-factor CIR model described by Equation (31).
The parameter values are 

 and the initial values of both  and  are 0.05. The extended Vasicek (Ext
Vas) model is chosen to fit the initial term structure of interest rates and the initial term
structure of interest-rate volatilites. The exercise price is expressed as a proportion of the
forward bond price.

The extended Vasicek model can be compared to another interest-rate model

by �tting it to the initial term structure of interest rates, the initial term

structure of interest-rate volatilities, and the expected future instantaneous

standard deviation of short rate volatilities given by the other model, and

Option maturity (years) Model Exercise price

0.96 0.98 1.00 1.02 1.04

1.0 Ext Vas 2.54 1.55 0.81 0.35 0.12

Two-factor CIR 2.55 1.56 0.81 0.34 0.11

2.0 Ext Vas 2.56 1.60 0.87 0.40 0.15

Two-factor CIR 2.58 1.61 0.86 0.38 0.13

3.0 Ext Vas 2.49 1.47 0.71 0.27 0.08

Two-factor CIR 2.51 1.48 0.70 0.24 0.06

4.0 Ext Vas 2.43 1.27 0.41 0.06 0.00

Two-factor CIR 2.44 1.28 0.40 0.05 0.00

ϕ1 = 0.05,ϕ2 = 0.05,σ1 = 0.03,σ2 = 0.03,ψ1 = 0.1,

ψ2 = 0.001, x1 x2



then testing to see whether the interest-rate option prices it gives are

signi�cantly di�erent from those of the other model. We have tested it

against a variety of di�erent one- and two-factor models in this way. Our

conclusion is that it provides a good analytic approximation to the European

option prices given by these other models.

Appendix

In this appendix we derive the relationship between  and the current-

term structure of spot rate and forward rate volatilities. As is the usual

convention, the term “volatility” will be used to refer to the standard

deviation of proportional changes, not actual changes, in the value of a

variable.

De�ne

In both models,  has the functional form

Since  it follows that

 and

B(t,T )

price at time  of a discount bond maturing at time 

continuously compounded interest rate at time  applicable to period

forward rate at time  corresponding at the time period 

volatility of  at time 

volatility of 

volatility of 

P(r, t,T ) : t T ;

R(r, t,T ) : t

(t,T );

F(r, t,T1,T2) : t (T1,T2);

σr(r, t) : r t;

σR(r, t,T ) : R(r, t,T );

σF (r, t,T1,T2) F(r, t,T1,T2).

P
(A1)

P(r, t,T ) = A(t,T )e−B(t,T )r.

R (r, t,T ) = −
1

T − t
lnP (r, t,T ),

R(r, t,T ) = −
1

T − t
[lnA(t,T ) − rB(t,T )]

∂R(r, t,T )

∂r
=

B(t,T )

T − t
.



From Ito’s lemma,

Hence,

The forward rate,  is related to spot rates by

Since  and  are instantaneously perfectly correlated in a
one-state variable model, it follows from (A2) that

 or

Equation (A2) enables  to be determined for all  from the current

term structure of spot rate volatilities. Equation (A3) enables  to be

determined from the current term structure of forward rate volatilities. 

 can be determined from  and the current term structure of

interest rates using (A1). Thus,  and  can be determined for all 

 from the current-term structure of interest rates and the current-term

structure of spot rate or forward rate volatilities.

1 This corresponds to the assumption made by Vasicek. In fact, the same final model is

obtained if the market price of interest-rate risk is set equal to  or even if it is set

equal to  If  is the market price of risk, Girsanovʼs theorem

shows that for no arbitrage the condition  must hold. Du�ie

(1988, p. 229) provides a discussion of this. The function 

R(r, t,T )σR(r, t,T ) = rσr(r, t)
∂R(r, t,T )

∂r
.

(A2)

B(t,T ) =
R(r, t,T )σR(r, t,T )(T − t)

rσr(r, t)
.

F ,

F(r, t,T1,T2) =
R(r, t,T2)(T2 − t) − R(r, t,T1)(T1 − t)

T2 − T1
.

R(r, t,T1) R(r, t,T2)

F(r, t,T1,T2)σF (r, t,T1,T2) =
B(t,T2) − B(t,T1)

T2 − T1
rσr(r, t)

(A3)

B(t,T2) − B(t,T1) =
F(r, t,T1,T2)σF (r, t,T1,T2)(T2 − T1)

rσr(r, t)
.

B(0,T ) T

B(0,T )

A(0,T ) B(0,T )

A(0,T ) B(0,T )

T

λ(t)r

λ1(t) + λ2(t)r. χ(r, t)

E[exp( 1
2 ∫

T
0 χ

2ds)] < ∞

χ(r, t) = λ1(t) + λ2(t)r

javascript:;


presents no problems as far as this condition is concerned if we assume  and 

 are always bounded in any interval 

2 This argument can be used to value options on coupon-bearing bonds in other one-

state variable models. Later in this paper we will use it in conjunction with the CIR

model.

3 This corresponds to the assumption made by Cox, Ingersoll, and Ross. It is

interesting to note that a market price of risk equal to  appears to give rise to

the same final model as  However, it violates the no-arbitrage condition

referred to in note 1.

4 As will be explained later, a cap is a portfolio of European put options on discount

bonds. A matrix of cap prices can be used in conjunction with Equations (17) and (19)

and put–call parity to obtain best-fit values for points on the  function.

5 In fact, empirical research in Dybvig (1988) shows that a one-factor Vasicek-type

model provides a surprisingly good fit to observed term structure movements.

6 See Hull and White (1987) fora comparison of Black–Scholes with a two-factor stock-

option-pricing model that incorporates stochastic volatility.

7 When using Black–Scholes, practitioners monitor their exposure to changes in the

volatility parameter even though the model assumes that the parameter is constant.

Similarly, when using the models suggested here, practitioners should monitor their

exposure to (a) all possible shi�s in the term structure of interest rates (not just those

that are consistent with the model) and (b) all possible shi�s in the term structure of

volatilities.

8 In most circumstances we can expect  to be relatively insensitive to the path

followed by 

9 For both models, the bond option was decomposed into discount-bond options

using the approach described in Section 2.

10 Blackʼs model assumes that forward bond prices are lognormal. In the case of

options on discount bonds, it is equivalent to the extended Vasicek model, but does

not provide a framework within which the volatilities of di�erent forward bond

prices can be related to each other.

11 For a discount bond, the bond-price distribution is exactly lognormal. For a coupon-

bearing bond, it is the sum of lognormal distributions.

12 Note that an option on a coupon-bearing bond cannot be decomposed into a

portfolio of options on discount bonds in the case of the two-factor models

considered here.

λ1(t)

λ2(t) (0, τ).

λ(t)/√r

λ(t)/√r.

B(0,T )

∂R/∂r

σ(t).
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