SPRINGER LINK

— Menu

Search

☐ Cart

Home > Decisions in Economics and Finance > Article

The origins of the mean-variance approach in finance: revisiting de Finetti 65 years later

Open access | Published: May 2007

Volume 30, pages 19–49, (2007) Cite this article

Download PDF &

You have full access to thisopen accessarticle

Decisions in Economics and

Finance

Aims and scope →

Submit manuscript →

Flavio Pressacco¹ & Paolo Serafini²

Abstract

In a recent critical review of de Finetti's paper "Il problema dei pieni", the Nobel Prize winner Harry Markowitz recognized the primacy of de Finetti in applying the mean-variance approach to finance, but pointed out that de Finetti did not solve the problem for the general case of correlated risks. We argue in this paper that a more fair sentence would be: de Finetti did solve the general problem but under an implicit hypothesis of regularity which is not always satisfied. Moreover, a natural extension of de Finetti's procedure to non-regular cases offers a general solution for the correlation case and shows that de Finetti anticipated a modern mathematical programming approach to mean-variance problems.

Mathematics Subject Classification (2000): 91B30, 90C20

Journal of Economic Literature Classification: G11, C61, B23, D81, G22

Download to read the full article text

Similar content being viewed by others

Combined Contributions

Mathematics Going Forward

Modern Extreme Value Theory The Mathematics of Finance at the Interface of Risk

Management, Bayesian Networks and Heavy-Tailed ...

Chapter © 2013 Chapter © 2023 **Mathematics** in the Real World

Chapter © 2013

Use our pre-submission checklist →

Avoid common mistakes on your manuscript.

References

- 1. Borch, K. (1974): The mathematical theory of insurance. Lexington Books, Lexington, MA
- 2. Bühlmann, H., Gerber, H. (1978): Risk bearing and the reinsurance market. *The ASTIN Bulletin* **10**, 12–24
- 3. Dantzig, G.B. (1963): Linear programming and extensions. Princeton University Press, Princeton, NJ

4. de Finetti, B. (1940): Il problema dei "Pieni". *Giornale dell' Istituto Italiano degli Attuari* **11**, 1–88; translation (Barone, L. (2006)): The problem of full-risk insurances. Chapter I. The risk within a single accounting period. *Journal of Investment Management* **4**(3), 19–43

Google Scholar

- 5. de Finetti, B. (1969): Un matematico e l'economia. Franco Angeli, Milan
- 6. Karush, W. (1939): Minima of functions of several variables with inequalities as side conditions. S.M. dissertation. University of Chicago, Chicago, IL
- 7. Kuhn, H.W., Tucker, A.W. (1951): Nonlinear programming. In: Neyman, J. (ed.): Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, CA, pp. 481–492
- 8. Lintner, J. (1965): The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. *The Review of Economics and Statistics* **47**, 13–37

Google Scholar

9. Markowitz, H. (1952): Portfolio selection. The Journal of Finance 7, 77-91

Google Scholar

10. Markowitz, H. (1956): The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly* **3**, 111–133

Google Scholar

11. Markowitz, H. (2006): de Finetti scoops Markowitz. *Journal of Investment Management* **4**(3), 5–18

12. Mossin, J. (1966): Equilibrium in a capital asset market. *Econometrica* **34**, 768–783

Google Scholar

- 13. Pressacco, F. (1986): Separation theorems in proportional reinsurance. Goovaerts, M. et al. (eds.): Insurance and Risk Theory. D. Reidel, Dordrecht, pp. 209-215
- 14. Rubinstein M. (2006a): Bruno de Finetti and mean-variance portfolio selection. *Journal of Investment Management* **4**(3), 3–4

Google Scholar

- 15. Rubinstein M. (2006b): A history of the theory of investments. Wiley, Hoboken, NJ
- 16. Shapiro, J.F. (1979): Mathematical programming: structures and algorithms. Wiley-Inter-science, New York
- 17. Sharpe, W. (1964): Capital asset prices: a theory of market equilibrium under conditions of risk. *The Journal of Finance* **19**, 425–442

Google Scholar

Author information

Authors and Affiliations

Dipartimento di Finanza dell'Impresa e dei Mercati Finanziari, Università di Udine,

Dipartimento di Matematica e Informatica, Università di Udine,

Paolo Serafini

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (
https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Pressacco, F., Serafini, P. The origins of the mean-variance approach in finance: revisiting de Finetti 65 years later. *Decisions Econ Finan* **30**, 19–49 (2007). https://doi.org/10.1007/s10203-007-0067-7

Received Accepted Issue Date 28 November 2006 23 January 2007 May 2007

DOI

https://doi.org/10.1007/s10203-007-0067-7

Keywords

<u>Optimum Path</u> <u>Portfolio Selection</u> <u>Corner Point</u> <u>Golden Rule</u>

Critical Risk

Search	
Search by keyword or author	
Navigation	Q
Find a journal	
Publish with us	
Track your research	