

[Home](#) > [Decisions in Economics and Finance](#) > Article

The origins of the mean-variance approach in finance: revisiting de Finetti 65 years later

| [Open access](#) | Published: May 2007

| Volume 30, pages 19–49, (2007) [Cite this article](#)

You have full access to this [open access](#) article

[Download PDF](#) ↴

Bookmark [Save article](#)

[View saved research](#) >

[Decisions in Economics and Finance](#)

[Aims and scope](#) →

[Submit manuscript](#) →

[Flavio Pressacco](#)¹ & [Paolo Serafini](#)²

 1761 Accesses 17 Citations 12 Altmetric 1 Mention [Explore all metrics](#) →

Abstract

In a recent critical review of de Finetti's paper "Il problema dei pieni", the Nobel Prize winner Harry Markowitz recognized the primacy of de Finetti in applying the mean-variance approach to finance, but pointed out that de Finetti did not solve the problem for the general case of correlated risks. We argue in this paper that a more fair sentence would be: de Finetti did solve the general problem but under an implicit hypothesis of regularity which is not always satisfied. Moreover, a natural extension of de Finetti's procedure to non-regular cases offers a general

solution for the correlation case and shows that de Finetti anticipated a modern mathematical programming approach to mean-variance problems.

Mathematics Subject Classification (2000): 91B30, 90C20

Journal of Economic Literature Classification: G11, C61, B23, D81, G22

[Download](#) to read the full article text

Similar content being viewed by others

$\{r_i^{n \times 1}, f_j \in \mathbb{R}^{K \times 1}, i = 1, \dots, n$
OLS regressions of asset returns r_i on factor returns f_j to obtain \hat{B} and $\hat{\alpha}$ in (2.4);
the mean $\hat{\mu}$ and covariance $\hat{\Sigma}$ under Fama-French Factor Model;
the response variable r^d and regression coefficients λ_1, λ_2 in (2.3);
 $i = \frac{1}{n} \sum_{i=1}^n [r^d - \mathbf{w}^T (\lambda_1 \mathbf{r}_i + \lambda_2 \mathbf{1})]^2$;
1, p1 do
= SCOPEx(foss, k);
1;
on $AIC(k) = \arg \min_k n \log(\frac{\text{tr} \Sigma^k}{n}) + 2 \|\mathbf{w}^k\|_0$.
 $\mathbf{w}^k / \mathbf{1}^T \mathbf{w}^k$

[Non-Markovian Mean-Variance Portfolio Selection Problems via Closed-Loop Equilibrium Strategies](#)

Article | 11 December 2023

[High-dimensional Portfolio Selection via an \$\ell_0\$ -Constrained Regression](#)

Article | 01 September 2025

[Investing 3.0—\(Mis\)measuring Risk](#)

Chapter | © 2023

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

[History of Statistics](#)

[Mathematics in Business, Economics and Finance](#)

[Mathematical Finance](#)

[Quantitative Finance](#)

[Risk Theory](#)

[Statistical Finance](#)

References

1. Borch, K. (1974): The mathematical theory of insurance. Lexington Books, Lexington, MA

2. Bühlmann, H., Gerber, H. (1978): Risk bearing and the reinsurance market. *The ASTIN Bulletin* **10**, 12-24

3. Dantzig, G.B. (1963): Linear programming and extensions. Princeton University Press, Princeton, NJ

4. de Finetti, B. (1940): Il problema dei “Pieni”. *Giornale dell' Istituto Italiano degli Attuari* **11**, 1-88; translation (Barone, L. (2006)): The problem of full-risk insurances. Chapter I. The risk within a single accounting period. *Journal of Investment Management* **4**(3), 19-43

[Google Scholar](#)

5. de Finetti, B. (1969): Un matematico e l'economia. Franco Angeli, Milan

6. Karush, W. (1939): Minima of functions of several variables with inequalities as side conditions. S.M. dissertation. University of Chicago, Chicago, IL

7. Kuhn, H.W., Tucker, A.W. (1951): Nonlinear programming. In: Neyman, J. (ed.): Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, CA, pp. 481-492

8. Lintner, J. (1965): The valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. *The Review of Economics and Statistics* **47**, 13-37

[Google Scholar](#)

9. Markowitz, H. (1952): Portfolio selection. *The Journal of Finance* **7**, 77-91

[Google Scholar](#)

10. Markowitz, H. (1956): The optimization of a quadratic function subject to linear constraints. *Naval Research Logistics Quarterly* **3**, 111-133

[Google Scholar](#)

11. Markowitz, H. (2006): de Finetti scoops Markowitz. *Journal of Investment Management* **4**(3), 5-18

[Google Scholar](#)

12. Mossin, J. (1966): Equilibrium in a capital asset market. *Econometrica* **34**, 768-783

[Google Scholar](#)

13. Pressacco, F. (1986): Separation theorems in proportional reinsurance. Goovaerts, M. et al. (eds.): Insurance and Risk Theory. D. Reidel, Dordrecht, pp. 209-215

14. Rubinstein M. (2006a): Bruno de Finetti and mean-variance portfolio selection. *Journal of Investment Management* **4**(3), 3-4

[Google Scholar](#)

15. Rubinstein M. (2006b): A history of the theory of investments. Wiley, Hoboken, NJ

16. Shapiro, J.F. (1979): Mathematical programming: structures and algorithms. Wiley-Inter-science, New York

17. Sharpe, W. (1964): Capital asset prices: a theory of market equilibrium under conditions of risk. *The Journal of Finance* **19**, 425-442

[Google Scholar](#)

Author information

Authors and Affiliations

Dipartimento di Finanza dell'Impresa e dei Mercati Finanziari, Università di Udine,

Flavio Pressacco

Dipartimento di Matematica e Informatica, Università di Udine,

Paolo Serafini

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (

<https://creativecommons.org/licenses/by-nc/2.0>), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Cite this article

Pressacco, F., Serafini, P. The origins of the mean-variance approach in finance: revisiting de Finetti 65 years later. *Decisions Econ Finan* **30**, 19–49 (2007). <https://doi.org/10.1007/s10203-007-0067-7>

Received

28 November 2006

Accepted

23 January 2007

Issue date

May 2007

DOI

<https://doi.org/10.1007/s10203-007-0067-7>

Keywords

[Optimum Path](#)

[Portfolio Selection](#)

[Corner Point](#)

[Golden Rule](#)

[Critical Risk](#)

Search

Search by keyword or author

Navigation

[Find a journal](#)

[Publish with us](#)

[Track your research](#)