

Search

Home > Decisions in Economics and Finance > Article

Reaching nirvana with a defaultable asset?

Published: 01 June 2017

Volume 40, pages 31–52, (2017) Cite this article

Decisions in Economics and

Finance

Aims and scope →

Submit manuscript →

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Access this article

Log in via an institution \rightarrow

Subscribe and save

Springer+ from €37.37 /Month

- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals.
- Cancel anytime

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

Calculus of Variations and Optimization

Notes

1. Cox and Huang (1989) require the global Lipschitz continuity of the diffusive coefficient for the risky asset-value process [see Conditions A and B at p. 46 in Cox and Huang (1989)]. By contrast, the diffusive coefficient in our setting is

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

- 6. There are parameter values that make the investor with (ϕ) take a net short position in the risky defaultable asset.
- 7. Similar investment-horizon effects have been found in the literature on dynamic portfolio choice with a risky non-defaultable asset characterized by a mean-reverting drift and a constant volatility [see, for example, Koijen et al. (2009)].
- 8. The functions U and V are conjugate if and only if $\langle U(w) = \inf_{y>0} (V(y)+wy) \rangle$ and $\langle V(y) = \sup_{w>0} (U(w)-wy) \rangle$.
- 9. The superscript $(\left(\cdot \right) ^{DS})$ refers to the notations of Delbaen

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Branger, N., Larsen, L.S., Munk, C.: Robust portfolio choice with ambiguity and learning about return predictability. J. Bank. Finance **37**(5), 1397–1411 (2013)

Article Google Scholar

Buch, C., Eickmeier, S., Prieto, E.: Macroeconomic factors and microlevel bank behavior. J. Money Credit Bank. **46**(4), 715–751 (2014)

Article Google Scholar

Campi, L., Sbuelz, A.: Closed-form pricing of benchmark equity default swaps under the CEV assumption. Risk Lett. **1**, ISSN: 1740-9551 (2005)

Chodorow-Reich, G.: Effects of unconventional monetary policy on financial

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Della Corte, P., Sarno, L., Tsiakas, I.: Volatility and correlation timing in active currency management. In: James, J., Marsh, I.W., Sarno, L. (eds.) Handbook of Exchange Rates. Wiley, Hoboken NJ, USA (2012). doi:10.1002/9781118445785.ch15

Dell'Ariccia, G., Laeven, L., Marquez, R.: Monetary policy, leverage, and bank risk-taking. J. Econ. Theory **149**, 65–99 (2014)

Article Google Scholar

Detemple, J.B., Garcia, R., Rindisbacher, M.: A Monte-Carlo method for optimal portfolios. J. Finance **58**, 401–446 (2003)

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Article Google Scholar

Gollier, C.: Discounting an uncertain future. J. Public Econ. 85, 149-166 (2002)

Article Google Scholar

Gozzi, F., Russo, F.: Verification theorems for stochastic optimal control problems via a time dependent Fukushima-Dirichlet decomposition. Stoch. Process. Appl. **116**(11), 1530–1562 (2006)

Article Google Scholar

Guidolin, M., Timmermann, A.: Asset allocation under multivariate regime

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Kim, T.S., Omberg, E.: Dynamic nonmyopic portfolio behavior. Rev. Financ. Stud. **9**, 141–161 (1996)

Article Google Scholar

Klebaner, F., Lipster, R.: When a stochastic exponential is a true martingale. Extension of a method of benes. Theory Probab. Appl. **58**(1), 38-62 (2014)

Article Google Scholar

Koijen, R.S.I., Rodríguez, I.C., Sbuelz, A.: Momentum and mean reversion in

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Lioui, A., Poncet, P.: International asset allocation: a new perspective. J. Bank. Finance **27**(11), 2203–2230 (2003)

Article Google Scholar

Liu, J.: Portfolio selection in stochastic environments. Rev. Financ. Stud. **20**, 1–39 (2007)

Article Google Scholar

Martin, I.: On the valuation of long-dated assets. J. Polit. Econ. **120**(2), 346–358 (2012)

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Article Google Scholar

Weitzman, M.L.: On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. **91**, 1-19 (2009)

Article Google Scholar

Acknowledgements

We would like to thank the editors and two anonymous referees for their insightful comments and suggestions.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

1.1 A.1 Proof of proposition 3.1

```
The problem of utility maximization can be written as (J(w)=\left(e^{rT}\right)^{1-\phi} u(w)) where u is defined as u(w)=\sup_{\left(t\right)^{t}} u(w)=\sum_{\left(t\right)^{t}} u(w)^{t} {tilde(w)}  (w)}E[U({tilde(w)}_{1-\phi})]. end(aligned)$
```

We apply to problem (A.1) the duality approach developed by Kramkov and Schachermayer (1999, 2003). To this aim, we observe that the utility function U satisfies Inada conditions [equation (2.4) in Kramkov and Schachermayer (1999)]. Let V denote the conjugate function V of V of V denote the conjugate function V of V of V denote the conjugate function V of V of V denote the conjugate function V of V denote the conjugate function V of V of V denote the conjugate function V of V of V denote the conjugate function V of V of

Your privacy, your choice

(A.1)

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

```
\frac{1}{\phi } = w\frac{1}{\phi }}{E\left[ \hat ^{-\phi }} {\phi } \right] . \end{aligned} $
```

The value function is then

```
 $$\left\{ U(\{ \e^{rT} \right) ^{1-\pi} } E\left[ U(\{ \e^{rT} \right) ^{1-\pi} } E\left[ U(\{ \e^{rT} \right) ^{1-\pi} } E\left[ U(\{ \e^{rT} \right) ^{1-\pi} } \right] ^{1-\pi} } E\left[ U(\{ \e^{rT} \right) ^{1-\pi} } \left[ \left( \e^{rT} \right) ^{1-\pi} } \right] ^{1-\pi} } E\left[ \left( \e^{rT} \right) ^{1-\pi} } \right) ^{1-\pi} } \left( \e^{rT} \right) ^{1-\pi} } \right) ^{1-\pi} } \left( \e^{rT} \right) ^{1-\pi} } \left( \e^{rT} \right) ^{1-\pi} } \left( \e^{rT} \right) ^{1-\pi} } \right) ^{1-\pi} } \right) ^{1-\pi} } \right) ^{1-\pi} } \left( \e^{rT} \right) ^{1-\pi} } \right) ^{1-\pi} } } \right) ^{1-\pi} } \right) ^{1-\pi} } } \right) ^{1-\pi} } } \right) ^{1-\pi} } \right) ^{1-\pi}
```

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

The random variable \(L_{T}\) in (A.2) is the Radon-Nikodym density of a probability measure equivalent to \(\{\mathbb {P}}\). In fact, Theorem 2.3 in Delbaen and Shirakawa (2002) applied to \(S^{DS}=Y,\) \(\rho^{DS}=0.5,\) \\(\,r^{DS}=b>0,\ \sigma^{DS}=2 \cdot (\cosh),\) \(\mu ^{DS}=b+2a \cdot (\cosh),\) and \(\theta^{DS}=a\) implies that \(\eta_{T}^{DS}=L_{T}\) is the Radon-Nikodym density of an equivalent probability measure \(\{\hat{\mathbb {Q}}}\}\) equivalent to \(\{\mathbb {P}}.\) Girsanov's theorem implies then that

```
\label{eq:continuous} $$\left(2^{t}=Z_{t}-\int_{0}^{t}a\right)^{t}ds \end{aligned} $$ (A.3)
```

is a $({\hat Q}})\$)-Brownian motion. Thus,

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

```
where G(t, y) is a \(\mathcal {C}^{1,2}\) function to be determined in such a way that \(G(0,y)=1\) and M is a \({\hat{\mathbb {Q}}}\)-martingale. In particular, Eq. (A.6) implies for \(t=0\) that \(M_{0}=G(T,y)\) and for \(t=T\)
```

```
 $$\left( \frac{a^{2}+a}{2}\right) - {T}Y_{t}dt\right) G(0,Y_{T}) = \exp \left( \frac{a^{2}+a}{2}\right) - {T}Y_{t}dt\right) , \end{aligned} $$
```

```
since \(G(0,\cdot)=1.\) The martingality condition \(M_{0}=E^{{\hat Q}}) \ [M_{T}]\) yields then
```

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Since $\(M_{t}\)$ has 0 drift in the Ito decomposition under $\(\hat{\mathbb Q})\)$, $\(M_{t}\)$ is a $\(\hat{\mathbb Q})\)$ local martingale. To conclude that $\(M_{t}\)$ is a martingale we define

```
\qquad \qquad \ \text{t}=\frac{M_{t}}{M_{0}}, \end{aligned}
```

which is a $({\hat Q}})\)$ local martingale as well, and show that $(\mathcal{z}_{t})\$ is a $({\hat Q}})\$ martingale. To this aim, we first observe that process $(\mathcal{z}_{t})\$ is a stochastic exponential. In fact, Ito formula implies that

 \qquad \$\begin{aligned} dM {t}=e^{\frac{a^{2}+a}{2}}int

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

```
\ \sqrt{Y \{s\}}d\hat{Z} \{s\}. \end{aligned}$$
```

We apply Theorem 4.1 in Klebaner and Lipster (2014) to conclude that \(\mathfrak \{z}_{t}\) is a true martingale. In particular, with Klebaner and Lipster notations (4.2) at page 44

we get

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

1.3 A.3 Proof of proposition 3.3

In what follows, we will mainly work under the martingale measure \(\mathbb $\{Q\}$ \\) whose density with respect to \(\{\mathbb $\{P\}\}$ \\) is \(\eta \) in Eq. (2.3). We denote with \(Z_{t}^{\mathbb Q}\)-Brownian motion

```
\label{lighted} $$\left(a \right) Z_{t}^{\mathcal Q}=Z_{t}+\int_{0}^{t}\left(Y_{s}\right)ds. $$\left(A.10\right)
```

Before proving the result, we first list some technical lemmas.

Lemma A.1

Let $(L^{*}=\frac{L_{T}}{\hat L_{T}})$ where (L_{T}) is given by (A.2). Then \

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

```
{Q}}}{d{\mathbb{P}}}}{d{\mathbb{P}}}}{d{\mathbb{Q}}}{d{\mathbb{Q}}}{d{\mathbb{Q}}}
\{P\}\}\}=\frac{d{\hat Q}}}{d\hat Q}}, \end{aligned}
and from the definitions of (\cdot) in (2.3) and of L in (A.2) that
\qquad $\begin{aligned} L {T}^{*}&=\frac{L {T}}{\eta}=\exp \left( a\int a) = \exp \left( a\in
\{0\}^{T} \operatorname{Y} \{s\} dZ \{s\}-\operatorname{Ca}\{2\} \}\{2\} \inf \{0\}^{T}Y \{s\} ds+\inf \{0\}^{T
\{0\}^{T} \operatorname{Y} \{s\} dZ \{s\} + \operatorname{C}\{1\}\{2\} \in \{0\}^{T}Y \{s\} ds \right) \
\left( \left( a+1\right) \right) \left( 3^{T}\right) \left( s + \frac{1-a^{2}}{2}\right) 
\{0\}^{T}Y \{s\}ds\ . \end{aligned}$$
From the definition of (Z \{s\}^{\mathbb{Q}}) in Eq. (A.10) we get
\qquad $\begin{aligned} L {T}^{*}&=\exp \left( \left( a+1\right) \int
       \{0\}^{T} \operatorname{Y} \{s\} \left(dZ \{s\}^{\mathbb{Q}}\right) - \operatorname{Y} \{s\} ds\right)
```

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 partners, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Let (M_{t}) be the $({\hat Q})$)-martingale defined in $(\underline{A.6})$, namely

```
 $\left(a^{2}+a\right)^{t}=e^{\frac{a^{2}+a}{2}} int $$ _{0}^{t}Y_{s}ds}e^{Y_{t}g(T-t)}. \end{aligned} $$
```

Then we have

```
 $$\left( \frac{t}&=2\right) Y_{t}M_{t}g(T-t)d\hat{Z}_{t}\\&=2\left( \frac{t}M_{t}\right) Y_{t}M_{t}g(T-t)\left( \frac{dZ_{t}^{\ell}}{\mathbf{Q}}\right) \\  \left( \frac{1}{\phi} \right) \left( \frac{dZ_{t}^{\ell}}{\mathbf{Q}}\right) \\  \left( \frac{dZ_{t}^{\ell}}{\mathbf{Q}}
```

where $\(\Delta.3 \)$ and $\(Z_{t}^{\) in Eq. \)$.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

```
 \begin{table}{0cm} $$ (A.13) $$ (A.13) $$ since $$ (d{\tilde{P}_{t}={\tilde{P}}_{t}\sqrt{Y_{t}}\sigma_{t}dt+{\tilde{P}}_{t}\sigma_{t}dt+{\tilde{P}}_{t}\sigma_{t}dZ_{t}={\tilde{P}}_{t}\sigma_{t}dt+{\tilde{P}}_{t}\sigma_{t}dZ_{t}={\tilde{P}}_{t}\sigma_{t}dZ_{t} $$ {\sqrt{Y_{t}}}dZ_{t}^{\mathbb} {Q}}\) from $(2.1)$ and $(A.10)$. $$ Therefore, we look for the Ito representation of $$ ({\tilde{W}}^{*}$ (t)=E^{\mathbb} {Q}_{t}\sigma_{t}={\tilde{P}_{t}}\) to derive $$ (\psi^{*}$ )$. Denoting with $$ (L_{t}={E\left[L_{T}\right] \prive{F}_{t}\sigma_{t}},$) and $$ (\eta_{t}={E\left[\eta_{t}\sigma_{t}},$), we have $$ \prive{F}_{t}\sigma_{t}}$$ (\phi_{t})$$ (\phi_{t})$$
```

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

 $\mathcal{F}_{t}\right=\frac{F}_{t}\right.$

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

 $\{F\} \{t\} \right] \end{Figure } {E\left[eta ^{-\frac{1-\pi}{2}} \right]}$

Comparing this equation with Eq. (A.13), we obtain

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

About this article

Cite this article

Battauz, A., De Donno, M. & Sbuelz, A. Reaching nirvana with a defaultable asset?. *Decisions Econ Finan* **40**, 31–52 (2017). https://doi.org/10.1007/s10203-017-0192-x

Received Accepted Published

07 October 2016 18 May 2017 01 June 2017

Issue date

November 2017

DOI

https://doi.org/10.1007/s10203-017-0192-x

Keywords

<u>Dynamic asset allocation</u> <u>Duality-based optimal portfolio solutions</u> <u>Convex duality</u>

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Navigation

Find a journal

Publish with us

Track your research

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to springer.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies