

[Home](#) > [Evolutionary and Institutional Economics Review](#) > Article

Financial structure, financial instability, and inflation targeting

| Article | Published: 09 February 2016

| Volume 13, pages 23–36, (2016) [Cite this article](#)

[!\[\]\(faf942dc3e59ce8eb64b4ac481eca7e0_img.jpg\) Save article](#)

[View saved research >](#)

[Evolutionary and Institutional
Economics Review](#)

[Aims and scope →](#)

[Submit manuscript →](#)

[Kenshiro Ninomiya](#) ¹

 423 Accesses 4 Citations [Explore all metrics →](#)

Abstract

Minsky, the first to propose the financial instability hypothesis, stressed the importance of the lender-of-last-resort for preventing financial instability. Overall, however, most of the research on financial instability has focused little on measures to prevent instability. Japan was trapped in a prolonged recession after the collapse of the bubble economy. The government promoted market-oriented economic reforms to cope. The recent international monetary crisis, triggered by the subprime loan crisis of 2007 in the US, cast a dark shadow over the world economy. Some developed nations, most notably New Zealand have been successful in implementing inflation-targeting policies. The Bank of Japan and the

US Federal Reserve have adopted the inflation-targeting measures after the crisis. The main purpose of this paper is to examine financial instability, financial cycles, and the effects of inflation targeting in a mixed competitive-oligopolistic system. The results of this paper demonstrate that inflation targeting stabilizes an economy in both competitive and oligopolistic systems.

 This is a preview of subscription content, [log in via an institution](#) to check access.

Access this article

[Log in via an institution](#)

Subscribe and save

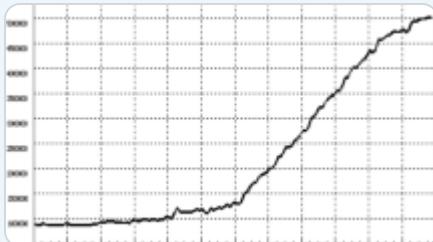
 Springer+

from €37.37 /Month

- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime

[View plans](#)

Buy Now

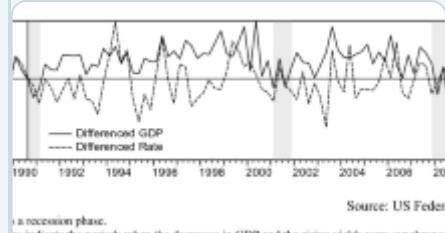

[Buy article PDF 39,95 €](#)

Price includes VAT (Poland)

Instant access to the full article PDF.

[Institutional subscriptions](#)

Similar content being viewed by others



Monetary easing policy and stable growth: a theoretic approach

Article | Open access

17 July 2019

	$t = 0$	$t = 1$
nature selects a type for player B	$\mu, q,$ $E\pi,$ R	$\varepsilon,$ x r, i π

Monetary policy games, financial instability and incomplete information

Article | 25 April 2016

Structural change and financial instability in the US economy

Article | 08 May 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

[Asian Economics](#)

[Economic Psychology](#)

[Economics](#)

[Economic History](#)

[Financial Crises](#)

[Financial Economics](#)

Notes

1. New Zealand adopted an inflation-targeting policy in 1990, and other developed countries such as the UK and Canada have followed New Zealand's example. The Reserve Bank of New Zealand and the Bank of England both set explicit inflation targets.
2. The macroeconomics is called "new consensus macroeconomics", It has been studied extensively by many heterodox economists. See, for example, Lavoie (2006), Rochon and Setterfield (2007), Setterfield (2009), Ninomiya (2010) and Nabeshima (2012).
3. He assumed the rate of interest of risky asset i as follows:

$$\begin{aligned} & (i = \rho + \xi(d) \equiv i(\rho, d), \xi(d) \geq 0, i(d) = \xi'(d)) \\ & > 0; \text{for } d > 0, i(d) < 0; \text{for } d < 0, \end{aligned}$$

where (ρ) is nominal rate of interest of interest-bearing safe assets and d is debt-capital ratio.

Ninomiya (2007a) formulated a macrodynamic model that incorporates dynamic equations debt burden and inflation. The “lender’s risk” of commercial banks has an important role in his model. However, he did not examine the effect of monetary policy. Ninomiya and Sanyal (2009) examined the effect of the inflation-targeting policy. However, they did not consider the financial structure.

4. Ninomiya (2007b) and Ninomiya and Tokuda (2012) also examined the financial instability and structural change in an open economy.
5. Dalziel (2002a) pointed out that the central banks no longer use the quantity theory of money, the cornerstone of monetarism, in practice. In other words, inflation targeting is not based on the quantity theory of money. Ninomiya (2002) examined the effect of inflation targeting in a Keynes-Goodwin model.
6. The Bank of Japan adopted an inflation-targeting policy in 2013 and also announced new quantitative and qualitative monetary easing measures, including the doubling of high-powered money within 2 years. The x percent rule indicates a quantitative monetary easing measure without the inflation targeting. Therefore, the x percent rule is different from Friedman’s k percent rule.
7. When (β) is large and (γ) is small, the central bank adopts an interest rate targeting policy.
8. Rose (1969) maintained that $(i_y < 0)$ is an important factor for ‘credit instability’. Taylor and O’Connell (1985) hypothesized that an increase in the

expected profit rate reduces the interest rate. Okishio ([1986](#)) presented *IS-BB* analysis.

9. The mark-up principle is written as $(p = (1 + \tau)Wn)$, where (τ) is the mark-up ratio. If the ratio is stable we obtain $(\dot{\pi} \equiv \dot{p}/p) = (\dot{W}/W) + (\dot{n}/n) = (\dot{W}/W) - \sigma_2$.
10. At the steady-state equilibrium, $(\dot{h}/h = 0)$ and $(\dot{K}/K = \sigma)$. This, in turn, can give us $(\dot{\pi}^* = \mu - \sigma)$.
11. The equilibrium value of y is $(y^* = \sigma/s)$. This is the familiar Keynesian formula. This means that the equilibrium income is the product of the long run equilibrium investment and the Keynesian multiplier ($1/s$). This property is exactly the same as Asada ([1991](#)).
12. See Ninomiya ([2007b](#)) for details on this point.
13. We think that this case is consistent with “new consensus macroeconomics”.
14. New Zealand adopted an inflation-targeting policy and market-oriented economic reforms to cope with stagnation after the oil crisis (see Dalziel and Lattimore [2001](#)). The stagnation was not a financial instability. However, the effect of the inflation-targeting policy is independent of the financial structure in the oligopolistic economy. Dalziel ([2002b](#)) criticized the market-oriented economic reforms. Conversely, the US adopted an explicit inflation-targeting policy just after the subprime mortgage crisis. If the financial structure of the US is fragile and the US economy is competitive, this policy could be effective.
15. See Keen ([1995](#)), Asada ([2006](#)), Ninomiya ([2007a](#)), Ninomiya and Sanyal ([2009](#)) and Ryoo ([2010](#)).

16. The method of the proof is based on Asada ([1991](#)) and Ninomiya ([2007b](#)).

References

Asada T (1991) On a mixed competition-monopolistic macrodynamic model in a monetary economy. *J Econ* 54(1):33-53

[Article](#) [Google Scholar](#)

Asada T (2006) Inflation targeting policy in a dynamic Keynesian model with debt accumulation: a Japanese perspective. In: Chiarella C, Flaschel P, Franke R, Semmler W (eds) Quantitative and empirical analysis of nonlinear dynamic macromodels. Elsevier, Amsterdam, Tokyo, pp 517-544

[Chapter](#) [Google Scholar](#)

Dalziel P (2002a) Triumph of Keynes: what now for monetary policy research? *J Post Keynes Econ* 24(4):511-527

[Article](#) [Google Scholar](#)

Dalziel P (2002b) New Zealand's economic reforms: an assessment. *Rev Polit Econ* 14(1):31-46

[Article](#) [Google Scholar](#)

Dalziel P, Lattimore R (2001) The New Zealand macroeconomy: a briefing on the reforms. Oxford University Press, Auckland

[Google Scholar](#)

Fischer S (1972) Keynes-Wicksell and neoclassical models of money and growth. *Am Econ Rev* 62(5):880-890

Keen S (1995) Finance and economic breakdown: modeling Minsky's financial instability hypothesis. *J Post Keynes Econ* 17(4):607-635

[Article](#) [Google Scholar](#)

Lavoie M (2006) A post-Keynesian amendment to the new consensus on monetary policy. *Metroeconomica* 57(2):165-192

[Article](#) [Google Scholar](#)

Minsky HP (1986) *Stabilizing an unstable economy*. Yale University Press, New Haven

[Google Scholar](#)

Morishima M (1977) *Walras' economics*. Cambridge University Press, Cambridge, New York

[Google Scholar](#)

Nabeshima N (2012) A critical approach of new consensus macroeconomics: a post Keynesian perspective. *Polit Econ Q* 48(4):75-85 **(in Japanese)**

[Google Scholar](#)

Ninomiya K (2002) Financial instability in a Keynes-Goodwin model. *Bull Jpn Soc Polit Econ* 39:103-118 **(in Japanese)**

[Google Scholar](#)

Ninomiya K (2005) Debt burden and monetary policy. *Polit Econ Q* 41(4):90-97 **(in Japanese)**

[Google Scholar](#)

Ninomiya K (2007a) Financial instability, cycle and income distribution in an oligopolistic economy. *Rev Monet Financ Stud* 24:12-25 **(in Japanese)**

[Google Scholar](#)

Ninomiya K (2007b) Open economy financial instability. *J Korean Econ* 8(2):329-355

[Google Scholar](#)

Ninomiya K (2010) Financial instability in a macroeconomic model in the short and long run: a position and an evaluation of the post Keynesians' analysis of financial instability. *Polit Econ Q* 46(4):25-33 **(in Japanese)**

[Google Scholar](#)

Ninomiya K, Sanyal A (2009) A bubble without inflation. *J Korean Econ* 10(1):55-79

[Google Scholar](#)

Ninomiya K, Tokuda M (2011) Structural change and financial instability. *Polit Econ Q* 48(2):81-95 **(in Japanese)**

[Google Scholar](#)

Ninomiya K, Tokuda M (2012) Structural change and financial instability in an open economy. *Korea World Econ* 13(1):1-37

[Google Scholar](#)

Okishio N (1986) The movement of interest rate and exchange rate. *The Kokumin Keizai Zasshi* 154(6):49-69 **(in Japanese)**

[Google Scholar](#)

Rochon LP, Setterfield M (2007) Interest rates, income distribution, and monetary policy dominance: post Keynesians and the fair rate of interest. *J Post Keynes Econ* 30(1):14-42

[Article](#) [Google Scholar](#)

Romer D (2000) Keynesian macroeconomics without the LM curve. *J Econ Perspect* 14(2):149-169

[Article](#) [Google Scholar](#)

Rose H (1969) Real and monetary factors in the business cycle. *J Money Credit Bank* 1(2):138-152

[Article](#) [Google Scholar](#)

Ryoo S (2010) Long waves and short cycles in a model of endogenous financial fragility. *J Econ Behav Organ* 74:163-186

[Article](#) [Google Scholar](#)

Setterfield M (2009) Macroeconomics without the LM curve: an alternative view. *Camb J Econ* 33(2):273-293

[Article](#) [Google Scholar](#)

Stein JL (1969) Neoclassical and 'Keynes-Wicksell' monetary growth models. *J Money Credit Bank* 1(2):153-171

[Article](#) [Google Scholar](#)

Stein JL (1971) Money and capacity growth. Columbia University Press, New York

[Google Scholar](#)

Taylor L, O'Connell SA (1985) A Minsky crisis. *Q J Econ* 100:871-886

[Article](#) [Google Scholar](#)

Acknowledgments

The author is grateful to anonymous referees for the valuable comments. The author would like to extend his gratitude to the Grant-in-Aid for Scientific Research (23530325) from the Japan Society for the Promotion of Science and the Ishii Memorial Securities Research Promotion Foundation for the financial supports. Any remaining errors in this work are the responsibility of the author.

Author information

Authors and Affiliations

Faculty of Economics, Shiga University, 1-1-1 Banba, Hikone, Shiga, 522-8522, Japan

Kenshiro Ninomiya

Corresponding author

Correspondence to [Kenshiro Ninomiya](#).

Appendix

The proof of Proposition 3

Assume that $(m_y < m_{y0})$ and (β) is sufficiently small, such that $(a_2 > 0)$. The proof of Proposition 1 demonstrates that $(a_1 a_2 - a_3 < 0)$ if (ε) is sufficiently small, while the proof of Proposition 2 demonstrates that $(a_1 a_2 - a_3 > 0)$ if (ε) is sufficiently large.

Given that $(a_1 a_2 - a_3)$ is a smooth and continuous function with (ε) , we find at least one value (ε_0) at which $(a_1 a_2 - a_3 = 0)$ and $(\partial(a_1 a_2 - a_3) / \partial \varepsilon |_{\varepsilon=\varepsilon_0} \neq 0)$. Furthermore, it also follows that $(a_2 > 0)$.

One of the conditions of the Hopf bifurcation theorem is satisfied when $(a_2 > 0)$ and $(a_1 a_2 - a_3 = 0)$. The characteristic equation of dynamic system (S) has a pair of purely imaginary roots $(\lambda_1 = \sqrt{a_2} i)$ and $(\lambda_2 = -\sqrt{a_2} i)$ at $(\varepsilon = \varepsilon_0)$.

From the Orlando formation, we obtain

$$a_1 a_2 - a_3 = -(\lambda_1 + \lambda_2)(\lambda_2 + \lambda_3)(\lambda_3 + \lambda_1) = -2h_1(\lambda_3^2 + 2h_1\lambda_3 + h_1^2 + h_2^2),$$

where (h_1) is the real part of two complex conjugate numbers and (h_2) is the absolute value of the imaginary part. By differentiating this equation with (ε) , we obtain

$$\frac{\partial(a_1 a_2 - a_3)}{\partial \varepsilon} = -2 \left[\frac{\partial h_1}{\partial \varepsilon} (\lambda_3^2 + 2h_1\lambda_3 + h_1^2 + h_2^2) + h_1 \frac{\partial}{\partial \varepsilon} (\lambda_3^2 + 2h_1\lambda_3 + h_1^2 + h_2^2) \right]$$

When $(h_1 = 0)$ and $(h_2 = h)$ are substituted into the above equation, we obtain

$$\frac{\partial (a_1 a_2 - a_3)}{\partial \varepsilon} \Big|_{\varepsilon=0} = -2(\lambda_3^2 + h^2) \left[\frac{\partial h_1}{\partial \varepsilon} \Big|_{\varepsilon=0} \right]$$

Therefore, if

$$\frac{\partial (a_1 a_2 - a_3)}{\partial \varepsilon} \Big|_{\varepsilon=0} \neq 0$$

then

$$\frac{\partial h_1}{\partial \varepsilon} \Big|_{\varepsilon=0} \neq 0$$

From the above discussion, all of the conditions in which Hopf bifurcation occurs are satisfied at the point $(\varepsilon = \varepsilon_0)$. Q.E.D.

About this article

Cite this article

Ninomiya, K. Financial structure, financial instability, and inflation targeting. *Evolut Inst Econ Rev* **13**, 23–36 (2016). <https://doi.org/10.1007/s40844-016-0029-2>

Published Issue date

09 February 2016 June 2016

DOI

<https://doi.org/10.1007/s40844-016-0029-2>

Keywords

[Financial structure](#) [Financial instability](#) [Inflation targeting](#) [Degree of competition](#)

JEL Classification

[E19](#) [E31](#) [E43](#) [E52](#)

Search

Search by keyword or author

Navigation

[Find a journal](#)

[Publish with us](#)

[Track your research](#)