

[Home](#) > [Review of Derivatives Research](#) > Article

Option Pricing Using Variance Gamma Markov Chains

| Published: January 2002

| Volume 5, pages 81–115, (2002) [Cite this article](#)[Save article](#)[View saved research >](#)

[Review of Derivatives Research](#)

[Aims and scope →](#)[Submit manuscript →](#)

Mikhail Konikov¹ & Dilip B. Madan²

604 Accesses 107 Citations 3 Altmetric [Explore all metrics →](#)

Abstract

This paper proposes a Markov Chain between homogeneous Lévy processes as a candidate class of processes for the statistical and risk neutral dynamics of financial asset prices. The method is illustrated using the variance gamma process. Closed forms for the characteristic function are developed and this renders feasible, series and option prices respectively. It is observed in the statistical and risk neutral process is fit to data on time period of 4 to 6 months in a state while this reduces to month for indices. Risk neutrally there is generally a low probability of a move to a state with higher moments. In some cases this is reversed.

Access this article

[Log in via an institution](#)

Subscribe and save

Springer+

from €37.37 /Month

- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime

[View plans](#)

Buy Now

[Buy article PDF 39,95 €](#)

Price includes VAT (Poland)

Instant access to the full article PDF.

[Institutional subscriptions](#)

Similar content being viewed by others

[A Gamma Ornstein–Uhlenbeck model driven by a Hawkes process](#)

[Markov Chains for High Frequency Stock Trading Strategies](#)

[Unimodal Maps Perturbed by Heteroscedastic Noise: An Application to a Financial Systems](#)

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

[Brownian Motion](#)[Markov Process](#)[Statistical Finance](#)[Stochastic Calculus](#)[Stochastic Analysis](#)[Stochastic Processes](#)

References

Andersen, T. G. (1994). "Stochastic Autoregressive Volatility: A Framework for Volatility Modeling," *Mathematical Finance* 4, 75-102.

[Google Scholar](#)

Andé, T., and H. Geman. (2000). "Order Flow, Transaction Clock and Normality of Asset Returns," *Journal of Finance* 55, 2259-2284.

[Google Scholar](#)

Bakshi, G., C. Cao, and Z. Chen. (1997). "Empirical Performance of Alternative Option Pricing Models," *Journal of Finance* 52, 2003-2049.

[Google Scholar](#)

Barndorff-Nielsen, O. (1998). "Processes of Normal Inverse Gaussian Type," *Finance and Stochastics* 2, 41-68.

[Google Scholar](#)

Barndorff-Nielsen, O., and N. Shephard. (1999). "Non-Gaussian OU Based Models and Some of Their Uses in Financial Economics," Working Paper No. 37, Center

Bates, D. (1996). "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutschemark Options," *Review of Financial Studies* 9, 69-108.

[Google Scholar](#)

Black, F., and M. Scholes. (1973). "The Pricing of Options and Corporate Liabilities," *Journal of Political Economy* 81, 637-654.

[Google Scholar](#)

Carr, P., H. Geman, D. Madan, and M. Yor. (2000). "The Fine Structure of Asset Returns: An Empirical Investigation," forthcoming in the *Journal of Business*.

Carr, P., H. Geman, D. Madan, and M. Yor. (2001). "Stochastic Volatility for Lévy Processes," Working Paper, University of Maryland.

Carr, P., and D. B. Madan. (1999). "Option Valuation Using the Fast Fourier Transform," *Journal of Computational Finance* 1, 61-73.

[Google Scholar](#)

Clark, P. K. (1973). "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," *Econometrica* 41, 135-156.

[Google Scholar](#)

Derman, E., and I. Kani. (1998). "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," *International Journal of Theoretical and Applied Finance* 3, 7-22.

[Google Scholar](#)

Dupire, B. (1994). "Pricing With a Smile," *Risk* 7,1, 18-20.

[Google Scholar](#)

Duan, J. I. Popova, and P. Ritchken. (1999). "Option Pricing under Regime Switching," Working Paper, Case Western Reserve University.

Eberlein, E., U. Keller, and K. Prause. (1998). "New Insights into Smile, Mispricing and Value at Risk: The Hyperbolic Model," *Journal of Business* 71, 371-406.

[Google Scholar](#)

Elliott, Robert J., Lakhdar Aggoun, and John B. Moore. (1995). *Hidden Markov Models: Estimation and Control (Applications of Mathematics, Vol. 29)*. Berlin: Springer-Verlag.

[Google Scholar](#)

Engle, R. F. (1982). "Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation," *Econometrica*, 61, 929-952.

[Google Scholar](#)

Geman, H., D. Madan, and M. Yor. (2001). "Time Changes for Lévy Processes," *Mathematical Finance* 11, 79-96.

[Google Scholar](#)

Heston, S. L. (1993). "A Closed Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," *Review of Financial Studies* 6, 327-343.

[Google Scholar](#)

Madan, D. B., and E. Seneta. (1990). "The Variance Gamma (VG) Model for Share Market Returns," *Journal of Business* 63,4, 511-524.

[Google Scholar](#)

Madan, D. B., P. P. Carr, and E. C. Chang. (1998). "The Variance Gamma Process and Option Pricing," *European Finance Review* 2, 79-105.

[Google Scholar](#)

Merton, R. C. (1973). "Theory of Rational Option Pricing," *Bell Journal of Economics and Management* 4, 141-183.

[Google Scholar](#)

Merton, R. C. (1976). "Option Pricing when Underlying Stock Returns are Discontinuous," *Journal of Financial Economics* 3, 125-144

[Google Scholar](#)

Nelson, D. (1991). "Conditional Heteroskedasticity in Asset Returns: A New Approach," *Econometrica* 59, 347-370.

[Google Scholar](#)

Author information

Authors and Affiliations

Department of Mathematics, University of Maryland, College Park, MD, 20742

Mikhail Konikov

Robert H. Smith School of Business, University of Maryland, College Park, MD, 20742

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konikov, M., Madan, D.B. Option Pricing Using Variance Gamma Markov Chains. *Review of Derivatives Research* 5, 81–115 (2002). <https://doi.org/10.1023/A:1013816400834>

Issue date

January 2002

DOI

<https://doi.org/10.1023/A:1013816400834>

Keywords

[Markov Chain](#)

[Characteristic Function](#)

[Closed Form](#)

[Asset Price](#)

[Option Price](#)

Search

Search by keyword or author

Navigation

[Find a journal](#)

Publish with us

Track your research

