

Search

Home > Computer Simulation Validation > Chapter

Validation of Agent-Based Models in Economics and Finance

| Chapter | First Online: 10 April 2019

pp 763–787 | Cite this chapter

Computer Simulation Validation

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

- > Store and/or access information on a device
- Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

and (iii) parameter space exploration. Finally, we discuss open issues in the field of ABM validation and estimation. In particular, we argue that more research efforts should be devoted toward advancing hypothesis testing in ABM, with specific emphasis on model stationarity and ergodicity.

a

This is a preview of subscription content, <u>log in via an institution</u> [2] to check access.

Access this chapter

Log in via an institution \rightarrow

Subscribe and save

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

- Durable hardcover edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide see info

Buy Hardcover Book \rightarrow

Tax calculation will be finalised at checkout

Purchases are for personal use only

<u>Institutional subscriptions</u> →

Similar content being viewed by others

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

calibration approach proposed by Werker and Brenner (2004); Brenner and Werker (2007) and the history friendly models developed by Malerba et al. (1999).

- 3. In that there is a major departure with respect to neoclassical models, where the (representative) agent has axiomatic preferences and maximizes some smooth objective function with an easily computable bliss point.
- 4. This is also one of the critiques that is usually addressed to ACE. Since ABMs do not stick to some generally accepted axiomatic rule of behavior, they introduce discretionary choices that the modeler shall take. We will see how practitioners have coped with this issue in Sect. 31.4.2.1. A possible solution to discipline the construction phase of an ABMs has been put forward by Grimm

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

- 9. See also Secchi and Seri (2017) on the issue of selecting the number of times a computational model should be run.
- 10. Level 0 models can be somehow accepted if their aim is merely exploratory rather than descriptive.
- 11. See, for example, Dosi et al. (2010, 2013, 2015, 2016a) for replication of business cycle and growth stylized facts; Dosi et al. (2017a) for accounting of labor-market micro and macro regularities; Popoyan et al. (2017) for the reproduction of many credit and interbank market properties; Lamperti et al. (2018a, b) for capturing coevolution of economic fundamentals with energy and emission quantities; Pellizzari and Dal Forno (2007); Leal et al. (2016) for

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

- 17. For other interesting approaches on pattern-based validation see Barde (2016b) and Marks (2018).
- 18. VAR-LiNGAM stands for Vector Autoregressive Linear Non-Gaussian Acyclic Model.
- 19. Coupling NOLH with kriging meta- modeling has been frequently used to approximate the output of computer simulation models (see, for example, McKay et al. 1979; Salle and Yıldızoğlu 2014; Bargigli et al. 2016).
- 20. The interested reader might want to look at Thiele et al. (2014) for a cookbook guiding model exploration and sensitivity and Grimm et al. (2005) for a pattern-oriented approach at model building and evaluation.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Anufriev, M., & Hommes, C. (2012). Evolutionary selection of individual expectations and aggregate outcomes in asset pricing experiments. *American Economic Journal: Microeconomics*, 4(4), 35–64.

Google Scholar

Assenza, T., Delli Gatti, D., & Grazzini, J. (2015). Emergent dynamics of a macroeconomic agent based model with capital and credit. *Journal of Economic Dynamics and Control*, 50(C):5–28.

Google Scholar

Assenza, T., Heemeijer, P., Hommes, C., & Massaro, D. (2013). *Individual*

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Google Scholar

Barde, S., & van der Hoog, S. (2017). *An empirical validation protocol for large-scale agent-based models*. Studies in Economics 1712, School of Economics, University of Kent.

Google Scholar

Bargigli, L., Riccetti, L., Russo, A., & Gallegati, M. (2016). *Network calibration* and metamodeling of a financial accelerator agent based model. Technical report, Università Politecnica delle Marche.

Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

agent-based models: An investigation on the CATS model. *Journal of Economic Behavior & Organization*, 67(3-4), 947-964.

Article Google Scholar

Boswijk, H. P., Hommes, C. H., & Manzan, S. (2007). Behavioral heterogeneity in stock prices. *Journal of Economic Dynamics and Control*, *31*(6), 1938–1970.

Article MathSciNet MATH Google Scholar

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). *Classification and regression trees*. CRC Press.

Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Burton, R. M., & Obel, B. (1995). The validity of computational models in organization science: From model realism to purpose of the model.

Computational & Mathematical Organization Theory, 1(1), 57–71.

Article Google Scholar

Canova, F., & Sala, L. (2009). Back to square one: Identification issues in DSGE models. *Journal of Monetary Economics*, 56(4), 431–449.

Article Google Scholar

Chen, S.-H., Chang, C.-L., & Du, Y.-R. (2012). Agent-based economic models and econometrics. *The Knowledge Engineering Review*, *27*(2), 187–219.

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Dawid, H., Harting, P., van der Hoog, S., & Neugart, M. (2016). A heterogeneous agent macroeconomic model for policy evaluation: Improving transparency and reproducibility.

Google Scholar

de Jong, E., Verschoor, W. F., & Zwinkels, R. C. (2010). Heterogeneity of agents and exchange rate dynamics: Evidence from the EMS. *Journal of International Money and Finance*, 29(8), 1652–1669.

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Article MathSciNet MATH Google Scholar

Dosi, G., Fagiolo, G., & Roventini, A. (2010). Schumpeter meeting keynes: A policy-friendly model of endogenous growth and business cycles. *Journal of Economic Dynamics and Control*, 34(9), 1748–1767.

Article MathSciNet MATH Google Scholar

Dosi, G., Napoletano, M., Roventini, A., & Treibich, T. (2016a). Micro and macro policies in the Keynes+Schumpeter evolutionary models. *Journal of Evolutionary Economics*, forthcoming, 1–28.

Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

tailed distribution of firm growth rates: A global sensitivity analysis. *Journal of Economic Interaction and Coordination*, 1–21.

Google Scholar

Epstein, J. M., & Axtell, R. (1996). *Growing artificial societies: Social science from the bottom up*. Brookings Institution Press.

Google Scholar

Fabretti, A. (2013). On the problem of calibrating an agent based model for financial markets. *Journal of Economic Interaction and Coordination*, 8(2), 277–293.

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Fernández-Villaverde, J., Ramírez, J. F. R., & Schorfheide, F. (2016). *Solution and Estimation Methods for DSGE Models* (NBER Working Papers 21862). National Bureau of Economic Research, Inc.

Google Scholar

Fernández-Villaverde, J., & Rubio-Ramírez, J. F. (2007). Estimating macroeconomic models: A likelihood approach. *Review of Economic Studies*, 74(4), 1059–1087.

Article MathSciNet MATH Google Scholar

Franks D (2000) Applying the method of simulated moments to estimate a small

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Gourieroux, C., Monfort, A., & Renault, E. (1993). Indirect Inference. *Journal of Applied Econometrics*, 8(S):85–118.

Google Scholar

Grazzini, J., & Richiardi, M. (2015). Estimation of ergodic agent-based models by simulated minimum distance. *Journal of Economic Dynamics and Control*, 51(C):148–165.

Google Scholar

Grazzini, J., Richiardi, M. G., & Tsionas, M. (2017). Bayesian estimation of agent-based models. *Journal of Economic Dynamics and Control*, 77(C), 26–47.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Guerini, M., & Moneta, A. (2017). A method for agent-based models validation. Journal of Economic Dynamics and Control.

Google Scholar

Guerini, M., Napoletano, M., & Roventini, A. (2017). No man is an island: The impact of heterogeneity and local interactions on macroeconomic dynamics. *Economic Modelling*.

Google Scholar

Hansen, L. P., & Heckman, J. J. (1996). The empirical foundations of calibration. *The Journal of Economic Perspectives*, 10(1), 87–104.

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Hyvarinen, A., Zhang, K., Shimizu, S., & Hoyer, P. O. (2010). Estimation of a structural vector autoregression model using non-gaussianity. *Journal of Machine Learning Research*, 11, 1709–1731.

MathSciNet MATH Google Scholar

Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration. With application to the demand for money. *Oxford Bullettin of Economics and Statistics*, *52*, 169–210.

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Lamperti, F. (2018a). Empirical validation of simulated models through the GSL-div: An illustrative application. *Journal of Economic Interaction and Coordination*, 13(1), 143–171.

Article Google Scholar

Lamperti, F. (2018b). An information theoretic criterion for empirical validation of simulation models. *Econometrics and Statistics*, 5, 83–106.

Article MathSciNet Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Article Google Scholar

Leal, S. J., Napoletano, M., Roventini, A., & Fagiolo, G. (2016). Rock around the clock: An agent-based model of low- and high-frequency trading. *Journal of Evolutionary Economics*, 26(1), 49–76.

Article Google Scholar

LeBaron, B., & Tesfatsion, L. (2008). Modeling macroeconomies as open-ended dynamic systems of interacting agents. *American Economic Review*, *98*(2), 246–250.

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Malerba, F., Nelson, R., Orsenigo, L., & Winter, S. (1999). 'History-friendly' models of industry evolution: The computer industry. *Industrial and Corporate Change*, 8(1), 3.

Article Google Scholar

Manson, S. (Ed.). (2002). *Validation and verification of multi-agent systems, in complexity and ecosystem management*. Cheltenham: Edward Elgar.

Google Scholar

Marks, R. (2007). Validating simulation models: A general framework and four applied examples. *Computational Economics*, 30(3), 265–290.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Article MathSciNet MATH Google Scholar

Morokoff, W. J., & Caflisch, R. E. (1994). Quasi-random sequences and their discrepancies. *SIAM Journal on Scientific Computing*, *15*(6), 1251–1279.

Article MathSciNet MATH Google Scholar

Paccagnini, A. (2010). *DSGE model validation in a bayesian framework: An assessment*. MPRA Paper 24509, University Library of Munich, Germany.

Google Scholar

Pellizzari, P., & Dal Forno, A. (2007). A comparison of different trading protocols

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Rosen, R. (1985). *Anticipatory systems: Philosophical, mathematical, and methodological foundations*. Oxford: Pergamon.

MATH Google Scholar

Salle, I., & Yıldızoğlu, M. (2014). Efficient sampling and meta-modeling for computational economic models. *Computational Economics*, 44(4), 507–536.

Article Google Scholar

Schelling, T. C. (1969). Models of segregation. *The American Economic Review*, 59(2), 488–493.

Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Spirtes, P., Glymur, C., & Scheines, R. (2000). *Causation, prediction, and search*. MIT Press.

Google Scholar

Tesfatsion, L. (2006). Chapter 16 agent-based computational economics: A constructive approach to economic theory. In *Handbook of computational economics*, 2 (pp. 831–880).

Google Scholar

Thiele, J. C., Kurth, W., & Grimm, V. (2014). Facilitating parameter estimation and sensitivity analysis of agent-based models: A cookbook using NetLogo and R.

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

taxes when heterogeneous agents can trade in different markets: A behavioral finance approach. *Journal of Economic Dynamics and Control*, 30(2), 293–322.

Article MathSciNet MATH Google Scholar

Windrum, P., Fagiolo, G., & Moneta, A. (2007). Empirical validation of agent-based models: Alternatives and prospects. *Journal of Artificial Societies and Social Simulation*, 10(2), 8.

Google Scholar

Winker, P., & Gilli, M. (2001). Validation of agent-based models of financial markets. *IFAC Proceedings Volumes*, *34*(20), 401–406.

Article Google Scholar

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Giorgio Fagiolo, Mattia Guerini, Francesco Lamperti, Alessio Moneta & Andrea Roventini

OFCE - Sciences Po, Paris, France

Mattia Guerini & Andrea Roventini

FEEM, Milano, Italy

Francesco Lamperti

Corresponding author

Correspondence to Giorgio Fagiolo.

Editor information

Editors and Affiliations

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

.RIS★ .ENW★ .BIB★

DOI Published Publisher Name

319-70766-2 31

Print ISBN Online ISBN eBook Packages

978-3-319-70765-5 978-3-319-70766-2 <u>Computer Science</u>

Computer Science (R0)

Publish with us

Policies and ethics [2]

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies

Your privacy, your choice

We use essential cookies to make sure the site can function. We, and our 93 **partners**, also use optional cookies and similar technologies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to allowing us and our partners to store and access personal data on your device, such as browsing behaviour and unique identifiers. Some third parties are outside of the European Economic Area, with varying standards of data protection. See our **privacy policy** for more information on the use of your personal data. Your consent choices apply to nature.com and applicable subdomains.

You can find further information, and change your preferences via 'Manage preferences'. You can also change your preferences or withdraw consent at any time via 'Your privacy choices', found in the footer of every page.

We use cookies and similar technologies for the following purposes:

Store and/or access information on a device

Personalised advertising and content, advertising and content measurement, audience research and services development

Accept all cookies

Reject optional cookies