

[Home](#) > [Information and Software Technologies](#) > Conference paper

Moving Averages for Financial Data Smoothing

| Conference paper

| pp 34–45 | [Cite this conference paper](#)

Information and Software Technologies
(ICIST 2013)

[Aistis Raudys](#), [Vaidotas Lenčiauskas](#) & [Edmundas Malčius](#)

Part of the book series: [Communications in Computer and Information Science \(\(CCIS, volume 403\)\)](#)

Included in the following conference series:

[International Conference on Information and Software Technologies](#)

2346 Accesses 56 Citations 8 Altmetric

Abstract

For a long time moving averages has been used for a financial data smoothing. It is one of the first indicators in technical analysis trading. Many traders debated that one moving average is better than other. As a result a lot of moving averages have been created. In this empirical study we overview 19 most popular moving averages, create a taxonomy and compare them using two most important factors

- smoothness and lag. Smoothness indicates how much an indicator change (angle) and lag indicates how much moving average is lagging behind the current price. The aim is to have values as smooth as possible to avoid erroneous trades and with minimal lag - to increase trend detection speed. This large-scale empirical study performed on 1850 real-world time series including stocks, ETF, Forex and futures daily data demonstrate that the best smoothness/lag ratio is achieved by the Exponential Hull Moving Average (with price correction) and Triple Exponential Moving Average (without correction).

 This is a preview of subscription content, [log in via an institution](#) to check access.

Access this chapter

[Log in via an institution](#)

Subscribe and save

Springer+

from €37.37 /Month

- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime

[View plans](#)

Buy Now

Chapter

EUR 29.95

Price includes VAT (Poland)

- Available as PDF
- Read on any device
- Instant download
- Own it forever

[Buy Chapter](#)

eBook

EUR 42.79

Price includes VAT (Poland)

- Available as PDF
- Read on any device
- Instant download
- Own it forever

[Buy eBook](#)

▲ Softcover Book

EUR 53.49

Price includes VAT (Poland)

- Compact, lightweight edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide - [see info](#)

[Buy Softcover Book →](#)

Tax calculation will be finalised at checkout

Purchases are for personal use only

[Institutional subscriptions →](#)

Preview

Unable to display preview. [Download preview PDF.](#)

Similar content being viewed by others

[Types of Moving Averages](#)

[Why Moving Averages?](#)

[Moving Averages with Reduced Lag Time](#)

Chapter | © 2017

Chapter | © 2017

Chapter | © 2025

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

1. Hamilton, J.D.: Time series analysis, vol. 2. Princeton University Press, Princeton (1994)

[Google Scholar](#)

2. Tan, Z., Quek, C., Cheng, P.Y.K.: Stock trading with cycles: A financial application of ANFIS and reinforcement learning. *Expert Systems with Applications* 38(5) (2011)

[Google Scholar](#)

3. Perry, J.: Kaufman, New Trading Systems and Methods, 4th edn. John Wiley & Sons (2005)

[Google Scholar](#)

4. Ni, Y.-S., Lee, J.-T., Liao, Y.-C.: Do variable length moving average trading rules matter during a financial crisis period? *Applied Economics Letters* (2012)

[Google Scholar](#)

5. Marques, N.C., Gomes, C.: Maximus-AI: Using Elman Neural Networks for Implementing a SLMR Trading Strategy. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS, vol. 6291, pp. 579–584. Springer, Heidelberg (2010)

[Chapter](#) [Google Scholar](#)

6. Ruseckas, J., Gontis, V., Kaulakys, B.: Nonextensive Statistical Mechanics Distributions And Dynamics of Financial Observables From The Nonlinear

[Google Scholar](#)

7. Jurgutis, A., Simutis, R.: An investor risk profiling using fuzzy logic-based approach in multi-agents decision support system. In: Proceedings of the 17th International Conference on Information and Software Technologies, Kaunas (2011)

[Google Scholar](#)

8. John, E.: Cybernetic Analysis for Stocks and Futures, pp. 213-227. John Wiley & Sons (2004)

[Google Scholar](#)

9. John, E.: Rocket Science for Traders, 245 pages. John Wiley & Sons (2001)

[Google Scholar](#)

10. Kirkpatrick, C.D., Dahlquist, J.R.: The Complete Resource for Financial Market Technicians, pp. 39-50. Financial Times Press (2006)

[Google Scholar](#)

11. Tillson, T.: Smoothing Techniques For More Accurate Signals. Stocks & Commodities 16, 33-37 (1998)

[Google Scholar](#)

12. Hull, A.: Hull moving average,

http://www.justdata.com.au/Journals/AlanHull/hull_ma.htm

13. John, E.: Cybernetic Analysis for Stocks and Futures, pp. 213-227. John Wiley

14. John, E.: Rocket Science for Traders. John Wiley & Sons (2001)
[Google Scholar](#)

15. Person, P.-O., Strang, G.: Smoothing by Sawitzky-Golay and Legendre filters,
<http://persson.berkeley.edu/pub/persson03smoothing.pdf>

16. Ellis, C.A., Parbery, S.A.: Is smarter better? A comparison of adaptive, and simple moving average trading strategies. *Research in International Business and Finance* 19(3), 399–411 (2005)
[Article](#) [Google Scholar](#)

17. Skurichina, M.: Effect of the kernel functional form on the quality of nonparametric Parzen window classifier. In: Raudys, S. (ed.) *Statistical Problems of Control*, vol. 93, pp. 167–181. Institute Mathematics and Informatics, Vilnius (1991) (in Russian)
[Google Scholar](#)

Author information

Authors and Affiliations

Faculty of Mathematics and Informatics, Vilnius University, Naugarduko st. 24, LT-03225, Vilnius, Lithuania

Aistis Raudys, Vaidotas Lenčiauskas & Edmundas Malčius

Editor information

Editors and Affiliations

Kaunas University of Technology, Studentu g. 50-313a, 51368, Kaunas, Lithuania

Tomas Skersys

Centre of Information Systems Design Technologies, Kaunas University of Technology, Studentu st. 50-313a, 51368, Kaunas, Lithuania

Rimantas Butleris

Kaunas University of Technology, Studentu g. 50-309a, 51368, Kaunas, Lithuania

Rita Butkiene

Rights and permissions

[Reprints and permissions](#)

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raudys, A., Lenčiauskas, V., Malčius, E. (2013). Moving Averages for Financial Data Smoothing. In: Skersys, T., Butleris, R., Butkiene, R. (eds) Information and Software Technologies. ICIST 2013. Communications in Computer and Information Science, vol 403. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-41947-8_4

[.RIS](#) [.ENW](#) [.BIB](#)

DOI

https://doi.org/10.1007/978-3-642-41947-8_4

Publisher Name

Springer, Berlin, Heidelberg

Print ISBN

978-3-642-41946-1

Online ISBN

eBook Packages

Keywords

[moving average](#) [smoothing](#) [filer](#) [time series](#) [smoothness](#) [lag](#) [hull](#) [exponential](#)

[TRIX](#)

Publish with us

[Policies and ethics](#)

Search

Search by keyword or author

Navigation

Find a journal

Published with us

Track your research