

[Home](#) > [Computational Intelligence in Economics and Finance](#) > Chapter

Computational Intelligence in Economics and Finance

| Chapter

| pp 3–55 | [Cite this chapter](#)

Computational Intelligence in Economics and Finance

[Shu-Heng Chen & Paul P. Wang](#)

 Part of the book series: [Advanced Information Processing \(\(AIP\)\)](#)

 906 Accesses 30 Citations

Abstract

Computational intelligence is a consortium of data-driven methodologies which includes fuzzy logic, artificial neural networks, genetic algorithms, probabilistic belief networks and machine learning as its components. We have witnessed a phenomenal impact of this data-driven consortium of methodologies in many areas of studies, the economic and financial fields being no exception. In particular, this volume of collected works will give examples of its impact on various kinds of economic and financial modeling, prediction and forecasting, and the analysis of various phenomena which sheds new light on a fundamental understanding of the

research issues. This volume is the result of the selection of high-quality papers presented at the **Second International Workshop on Computational Intelligence in Economics and Finance (CIEF'2002)**, held at the Research Triangle Park, North Carolina, United States of America, March 8-14, 2002. To complete a better picture of the landscape of this subject, some invited contributions from leading scholars were also solicited.

 This is a preview of subscription content, [log in via an institution](#) to check access.

Access this chapter

[Log in via an institution](#)

Subscribe and save

Springer+

from €37.37 /Month

- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime

[View plans](#)

Buy Now

Chapter

EUR 29.95

Price includes VAT (Poland)

- Available as PDF
- Read on any device
- Instant download
- Own it forever

[Buy Chapter](#)

eBook

EUR 160.49

Price includes VAT (Poland)

- Available as PDF
- Read on any device
- Instant download
- Own it forever

[Buy eBook](#)

Softcover Book

EUR 213.99

Price includes VAT (Poland)

- Compact, lightweight edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide - [see info](#)

[Buy Softcover Book →](#)

Hardcover Book

EUR 213.99

Price includes VAT (Poland)

- Durable hardcover edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide - [see info](#)

[Buy Hardcover Book →](#)

Tax calculation will be finalised at checkout

Purchases are for personal use only

[Institutional subscriptions →](#)

Preview

Unable to display preview. [Download preview PDF.](#)

Similar content being viewed by others

[Integrating Decision Analytics and Advanced Modeling in Financial and Economic Systems Through Artificial...](#)

Chapter | © 2024

[FinBrain: when finance meets AI 2.0](#)

Article | 01 July 2019

[After the Collision of Crisis and Opportunity to Redefining the Artificial Intelligence in Finance: The New Intelligent...](#)

Chapter | © 2021

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

1.1 Aha, D. (1997): Lazy Learning. Kluwer

[Google Scholar](#)

1.2 Aoki, M. (1987): State Space Modeling of Time Series. Springer-Verlag

[Google Scholar](#)

1.3 Armano, G., Minnt A., Marchesi, M. (2002): NXCS-A Hybrid Approach to Stock Indexes Forecasting. In: Chen, S.-H. (Ed.), Genetic Algorithms and Genetic Programming in Computational Finance, Kluwer

[Google Scholar](#)

1.4 Aussem, A., Campbell, J., Murtagh F. (1998): Wavelet-Based Feature Extraction and Decomposition Strategies for Financial Forecasting. Computational Intelligence in Economics and Finance, Vol. 6, No. 2, 5-12

[Google Scholar](#)

1.5 Azoff, M. (1994): Neural Network Time Series: Forecasting of Financial Markets. Wiley

[Google Scholar](#)

1.6 Baestaens, 1).-E., Van Den Bergh, W., Wood D. (1991): Neural Network Solutions for Trading in Financial Markets, Pitman

[Google Scholar](#)

1.7 Baglioni, S., Sorbello, D., Pereira, C., Tettarnanzi, A. G. B. (2000): "Evolutionary Multiperiod Asset Allocation," In: Whitley, D., Goldberg, D., Cantti-Paz, E., Spector, L., Parrnee, I., Beyer, H. -G. (Eds.), Baglioni, S., Sorbello, D., Pereira, C., Tettarnanzi, A. G. B, 597–604. Morgan Kaufmann

[Google Scholar](#)

1.8 Balakrishnan, A. (1987): Kalman Filtering Theory. Optimization Software

[Google Scholar](#)

1.9 Balakrishnan, A. (1988): State Space Theory of Systems. Optimization Software

[Google Scholar](#)

1.10 Bauer, R., Jr. (1994): Genetic Algorithms and Investment Strategies. Wiley

[Google Scholar](#)

1.11 Billot, A. (1995): Economic Theory of Fuzzy Equilibria: an Axiomatic Analysis. Springer-Verlag, 2nd edition

[Google Scholar](#)

1.12 Bojadziev, G., Bojadziev, M., Zadeh, L. (1997): Fuzzy Logic for Business, Finance, and Management. World Scientific

[Google Scholar](#)

1.13 Boguslayskij, I. (1988): Filtering and Control. Optimization Software

[Google Scholar](#)

1.14 Bonabeau, E., Meyer, C. (2002): Swarm Intelligence: a Whole New Way to

1.15 Chang, K., Osier, C. (1994), "Evaluating Chart-Based Technical Analysis: the Head-and-Shoulders Pattern in Foreign Exchange Markets," Working Paper, Federal Reserve Bank of New York

1.16 Chen, 5.-11. (2002a): Evolutionary Computation in Economics and Finance, Physica, Verlag

1. Chen, S.-H. (20021r): Genetic Algorithms and Genetic Programming in Computational Finance, Kluwer

1.18 Chen, T., Chen, H. (1995): Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems. IEEE Transactions on Neural Networks, Vol. 6, 911-917

1.19 Cordon, O., Herrera, F., Hoffmann, F., Magdalena. L. (2001): Genetic Fuzzy Systems. World Scientific

1.20 Crisan, I.). (2001): Particle Filters-a Theoretical Perspective. In: Doucet A., Freitag, N., Cordon, N. (2001) (Eds.), Sequential Monte Carlo Methods in Practice, Springer-Verlag, 17-41

1.21 Cristiarrini, N., Shawe-Taylor, J. (2000): An Introduction I Srtpport Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press

[Google Scholar](#)

1.22 Deboeck, G., Kohonen, T. (1998), Visual Explorations in Finance with Self-organizing Maps, Springer-Verlag

[Google Scholar](#)

1.23 Deng, J. (1982): Control Problems of Grey System. System and (.ou trol Letters, No. 5, 288 299

[Google Scholar](#)

1.24 Deng, J. (1989): Introduction to Grey Syeierri Theory, Journal of Carey System; Vol. 1, No. 11. 121

[Google Scholar](#)

1.25 Dorigo, M. (1992): Optimization, Learning and Natural Algorithms, 1'h. I). Thesis, Politecnice di Milano, Italy, in Italian

[Google Scholar](#)

1.26 Dorigo, V1., Marriezzo, V., Colorni, A. (1996): The Ant System: Optimization by a Colony of Cooperating Agents, IEEE, Transactions on Systems, Klan. and Cybernetics, Part B, Vol. 26, No. I, 29-41

[Google Scholar](#)

1.27 Duffy, J., McNelis, P. D. (2001): Approximating and Simulating the

Stoe hast, k: Growth Model: Parameterized Expectations, Neural Networks, and the (icnet is Algorithm. *Journal of Economic Dynamics and Control* 25(9), 1273 130: 1

[Google Scholar](#)

1.28 Eberhart, R., Simpson, R, Dobbins, R. (1996): Computational Intelligence PC Tools. AP Professional

[Google Scholar](#)

1.21) Epstein, J., Axtell, 11. (1996): Growing Artificial Societies: Social Science from the Bottom Up. MIT Press

[Google Scholar](#)

1.30 Farr, J., Gijbels, I. (1996): Local Polynomial Modeling and Its Applications. Chapman & Hall.

[Google Scholar](#)

1.31 Fischer, R. (2001): "I'lie New Fibonacci 'Trader: Tools and Strategies for 'Trading Success. Wiley

[Google Scholar](#)

1. Fogel, D. (1995): livolut.ionary Computation toward a New Philosophy of Machine Intelligence. IEEE Press

[Google Scholar](#)

1.33 Fogel, D., Chellapilla, K., Angeline, P. (2002): Evolutionary Computation and Economic Models: Sensitivity and Unintended Consequences. In: Chen, S. 11. (Ed.), Evolutionary Computation in Economics and Finance, Physics Verlag, 215 269

[Google Scholar](#)

1.34 Vogel, L. (1964): On the Organization of Intellect, l'h.l). "Thesis, UCLA

[Google Scholar](#)

1.35 Vogel, L. (1997): A Retrospective View and Outlook on Evolutionary Algorithms. In: Reusch, B. (Ed.), Computational Intelligence: 'Theory and Applications, 5th Fuzzy Days, Springer-Verlag, Berlin, 337 312

[Google Scholar](#)

1.36 Fogel, L. J., Owens, A..1., Walsh, NI..J. (1966): Artificial Intelligence through Simulated Evolution, Wiley

[Google Scholar](#)

1.37 Carey, NI., Johnson, D. (1979): Computers and Intractability, a Guide to the Theory of NP-(ompleteness. Freeman

[Google Scholar](#)

1.38 1.38 Gately. E. (1996): Neural Networks for f'inancial Forecasting. Wiley

[Google Scholar](#)

1. Gencay, R., Selcuk, I"., Whitcher, B. (2001): an Introduction to Wavelet, and Other Filtering Methods in Finance and Economies, Academic Press

[Google Scholar](#)

1.40 Granger, C., Flatanal:a. M. (1964): Spectral Analysis of Economic Thne Series. Princeton

[Google Scholar](#)

1.41 Goffe, W. (1996): SIMANN: A Global Optimization Alogorithm Using Simulated Annealing. *Studies in Nonlinear Dynamics and Econometrics*. Vol. I. No. 3

[Google Scholar](#)

1.42 Goffe, W., Ferrier, G., Rogers, J. (1992): Simulated Annealing: an Initial Application in Econometrics. *Computer Science in Economics and Management*. Vol. 5

[Google Scholar](#)

1.43 Goffe, W., Ferrier, G., Rogers, J. (1991): Global Optimization of Statistical Functions with Simulated Annealing. *Journal of Econometrics*. Vol. 60. No. 1/2. January/February. 65-99

[Google Scholar](#)

1.44 Cross, S., Aron, S., Deneubourg, J. L., Pasteels, J. M. (1989): Self-organized Shortcuts in the Argentine Ant. *Naturwissenschaften* 76, 579-581

[Article](#) [Google Scholar](#)

1.45 Hampton, J. (1997): Rough Set Theory The Basics (Part 1). *Journal of Computational Intelligence in Finance*, Vol. 5, No. 6, 25-29

[Google Scholar](#)

1.46 Hampton, J. (1998): Rough Set Theory—The Basics (Part 2). *Journal of Computational Intelligence in Finance*, Vol. 6, No. 1, 40-42

[Google Scholar](#)

1.47 Hampton, J. (1998): Rough Set Theory The Basics (Part 3). *Journal of Computational Intelligence in Finance*, Vol. 6, No. 2, 35-37

1.48 Harvey, A. (1989): Forecasting Structural Time Series Models and the Kalman Filter. Cambridge

[Google Scholar](#)

1.49 Hiemetra, Y. (1996): Applying Neural Networks and Genetic Algorithms to Tactical Asset Allocation, NeuroveSt Journal, 4 (3), 8-15

[Google Scholar](#)

1.50 Keber, C. (2002): Collective Intelligence in Option Pricing-Determining Black-Scholes Implied Volatilities with the Ant Programming Approach, working paper, University of Vienna

[Google Scholar](#)

1.51 Kirkpatrick, S., Gelatt, C., Vecchi, M. (1983), Optimization by Simulated Annealing, Science, Vol. 220, 671-680

[Google Scholar](#)

1.52 Kitagawa, G., Sata, S. (2001): Monte Carlo Smoothing and Self-organizing State Space Model. In: Doucet, A., Freitas, N., Gordon, N. (2001) (Eds.), Sequential Monte Carlo Methods in Practice, Springer-Verlag, 177-196

[Google Scholar](#)

1.53 Kohonen, T. (1982): Self-organized Foundation of Topologically Correct Feature Nlaps. Biological Cybernetics 43, 59-69

[Article](#) [MathSciNet](#) [MATH](#) [Google Scholar](#)

1.54 Lin, C. -T., Yang, S. -Y. (1999): Selection of Home Mortgage Loans Using

1.55 Lin, C. -T., Chen, L. -H. (1999): A Grey Analysis of Bank Re-decreasing the Required Reserve Ratio. *Journal of Grey System*, Vol. 11, No. 2, 119-132

1.56 Lin, C. -T., Chang, P. -C. (2001): Forecast the Output Value of Taiwan's Machinery Industry Using the Grey Forecasting. *Journal of Grey System*, Vol. 1.3, No. 3, 259 268

1.57 Lo, A., Mama,ysky, HI., Wang, J. (2000): Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation, *Journal of Finance*. Vol. LV, No. 4, 1705-1765

1.58 Mansur, Y. (1995): Fuzzy Sets and Economics: Applications of Fuzzy Mathematics to Non-cooperative Oligopoly. Edward Elgar

1.59 Marks, R. (2002): Playing Games with Genetic Algorithms. In: Chen, S. H. (Ed.), l'veolutionary Computation in Economics and Finance, Physica-Verlag,:i 1 44

1.60 Messier, W. 1U'., Hansen, J. V. (1988): Inducing Rule for Expert System Development: art Example Using Default and Bankruptcy Data. *Management Science* 34, 1403 H15

1.61 Modzek, A., Skabek, K. (1998): Rough Sets in Economic Applications. In: Polkowski, L., Skowron, A. (Eds.), Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, Physica-Verlag. Chap. 13

[Google Scholar](#)

1.62 Mortensen, R. (1987): Random Signals and Systems. Wiley

[Google Scholar](#)

1.63 Osier, C'., Chang, K. (1995): Head and Shoulder: Not Just a Flaky Pattern. Staff Report: No. 1, federal Researve Bank of New York

[Google Scholar](#)

1.61 Pan, Z., Wang, X. (1998): Wavelet-Based Density Estimator Model for Forecasting. ('output at.ional Intelligence in Economics and Finance, Vol. 6, No. 1, 13

[MathSciNet](#) [Google Scholar](#)

1.65 l'ackard, N. (1990): A Genetic Learning Algorithm for the Analysis of Complex Data, Complex Systems 4, No. 5, 543-572

[MathSciNet](#) [Google Scholar](#)

1.66 Pedrycz, W. (1997): Computational Intelligence: An Introduction. CRC I'n ss
1.67 Peray, K. (1999): Investing in Mutual Funds Using]Fuzzy Logic. CRC Press

[Google Scholar](#)

1.68 Quinlan, R. (1986): Induction of Decision Trees. iVlachine Learning 1(1), 81.

1.69 Quinlan, R. (1987): Simplifying Decision Trees. International Journal of Man-Machine Studies 27 (3), 221-231

[Article](#) [Google Scholar](#)

1.70 Quinlan, R. (1993): C4.5: Programs for Machine Learning. Morgan Kaufmann

[Google Scholar](#)

1.71 Rechenberg, I. (1965): Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment, Library 'Translation No. 1122, August. Farnborough, UK

[Google Scholar](#)

1.72 Refenes, A. -P. (1995): Neural Networks in the Capital Markets. Wiley

[Google Scholar](#)

1.73 Refenes, A.-P., Zapranis, A. (1999): Principles of Neural Model Identification, Selection and Adequacy: with Applications in Financial Econometrics. Springer

[Google Scholar](#)

1.74 Shadbolt, J., Taylor, J. (2002): Neural Networks and the Financial Markets- Predicting, Combining, and Portfolio Optimisation. Springer

[Google Scholar](#)

1.75 Schmertmann, C. P. (1996): Functional Search in Economics Irving Genetic Programming. Computational Economics 9(4), 275 298

[Google Scholar](#)

1.76 Schwefel, H. -P. (1965): Kybernetische Evolution als Strategies der Experimentellen Forschung in der Strömungstechnik. Diplomarbeit, Thesis, 'kiln ncal versity of Berlin

[Google Scholar](#)

1.77 Schwefel, H. -P. (1995): Evolution and Optimum Seeking, Wiley

[Google Scholar](#)

1.78 Skalkoz, C. (1996): Rough Sets help Time the Bi X. M. uralvelt. Journal. Nov./Dec., 20-27

[Google Scholar](#)

1.79 Slowinski, R., Zopounidis, C. (1995): Applications of the (tough Set. Approach to Evaluation of Bankruptcy Risk. International Journal of Intelligent Systems in Accounting, Finance and Management 4. 27-41

[Google Scholar](#)

1.80 Smithson, M. J. (1987): Fuzzy Set Analysis for Behavioral *and* Social Sciences. Springer-Verlag, New York

[Book](#) [Google Scholar](#)

1.81 Sugeno, M., Yasukawa, T. (1993): A Fuzzy-Logic-Based Approach to Qualitative Modeling. IEEE Transactions on Fuzzy Systems, Vol. I, 7: 31

[Google Scholar](#)

1.82 Suykens,I., Vandewalle. J. (1998): The K.U. Leuven Time Series Prediction Competition. In: Suykens, J., Vandewalle, J. (Eds.), Nonlinear Alodeling: Advanced Black-Box Techniques, Kluwer, 241–253

[Chapter](#) [Google Scholar](#)

1.83 Takagi, 'T., Sugeno, M. (1985): Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Transactions on Systems,,: Alan, and Cybernetics, Vol. 15, 116–132

[Google Scholar](#)

1.84 Tac, N., Linn, S. (2001): Fuzzy Inductive Reasoning, Expectation Formation and the Behavior of Security Prices. Journal of Economic Dynamics and Control. Vol. 25, 321 361

[Google Scholar](#)

1.85 I.85 Taylor P., Abdul-Kader, Vl., Dngdale. D. (1998): Investment Decisions in Advanced Manufacturing “i(ehnology\Fuzzy Set ”T henry Approach. Ashgate

[Google Scholar](#)

1.86 Thomason, M. R. (1997): Financial Forecasting with Wavelet Filters and Neural Networks. C”DorpoLational Intelligence in Economics and Finance, Vol. No. 2, 27 32

[Google Scholar](#)

1.87 Trippi, R. It., “Turban, E. (1993): Vernal Networks in Finance and Investing. Irwin

[Google Scholar](#)

1.88 Ici, Y.-C., Lin. C.-`I'., "Tsai, II.-.1. (2001): `Ilre Performance Evaluation Model of Stock-Listed Banks in Taiwan liv (irev Relational Analysis and Factor Analysis. 'Che Journal of (trey Systeu n. Vol. 13, No. 2, 153-164

[Google Scholar](#)

1.89 Vapnik, V. (1998a): Statistical Learning "Theory. Wiley

[Google Scholar](#)

1.90 Vapnik, V. (1998b): The Support Vector Method of Function Estimation. In: Suykens, J.. Vandewalle,.1. (Eds.). Nonlinear Modeling: advanced Black-Box Techniques. Kluwer, Boston, 55-85

[Google Scholar](#)

1.91 Von Altrock, C. (1996): Fuzzy Logic and Neurofnzzy Applieatious iu Busirncse and finance. Prentice Hall

[Google Scholar](#)

1.92 White, IL (1988): Economic Prediction Using Neural Networks. the Case of IBM Daily Stock Returns. Proceedings of IEEE International Conference on Neural Networks, Vol. 2, IEEE, New York, 451-458

[Chapter](#) [Google Scholar](#)

1.93 White, II. (1992): Artificial Neural Networks-Approximation 'Theory and Learning Theory. Blackwell

[Google Scholar](#)

1.94 Wolberg, J. (2000): Expert Trading Systems: Modeling Financial Markets with Kernel Regression. Wiley

[Google Scholar](#)

1.95 Zirilli, J. (1996): Financial Prediction Using Neural Networks. International Thomson Publishing

[Google Scholar](#)

1.96 Zopounidis, C., Pardalos, P., Baourakis, C. (2002): Fuzzy Sets in Management, Economy & Marketing. World Scientific

[Google Scholar](#)

Author information

Authors and Affiliations

AI-ECON Research Center, Department of Economics, National Chengchi University, Taipei, Taiwan, 11623

Shu-Heng Chen

Department of Electrical & Computer Engineering, Duke University, P.O. 90291, Durham, NC, 27708-0291, USA

Paul P. Wang

Editor information

Editors and Affiliations

AI-ECON Research Center Department of Economics, National Chengchi University, 11623, Taipei, Taiwan

Shu-Heng Chen

Department of Electrical and Computer Science, Duke University, P.O. 90291, 27708-0291, Durham, NC, USA

Paul P. Wang

Rights and permissions

[Reprints and permissions](#)

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, SH., Wang, P.P. (2004). Computational Intelligence in Economics and Finance. In: Chen, SH., Wang, P.P. (eds) Computational Intelligence in Economics and Finance. Advanced Information Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06373-6_1

[.RIS](#) [.ENW](#) [.BIB](#)

DOI	Publisher Name	Print ISBN
https://doi.org/10.1007/978-3-662-06373-6_1	Springer, Berlin, Heidelberg	978-3-642-07902-3
Online ISBN	eBook Packages	
978-3-662-06373-6	Springer Book Archive	

Keywords

[Fuzzy Logic](#) [Computational Intelligence](#) [European Monetary Union](#) [Grey Model](#) [Grey System](#)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

[Policies and ethics](#)

Search

Search by keyword or author

Navigation

[Find a journal](#)

[Publish with us](#)

[Track your research](#)