— Menu

Search

Cart

Home > Computational Intelligence in Economics and Finance > Chapter

Computational Intelligence in Economics and Finance

Chapter

pp 3–55 | Cite this chapter

Computational Intelligence in Economics and Finance

Shu-Heng Chen & Paul P. Wang

Part of the book series: Advanced Information Processing ((AIP))

886 Accesses 68 Citations

Abstract

Computational intelligence is a consortium of data-driven methodologies which includes fuzzy logic, artificial neural networks, genetic algorithms, probabilistic belief networks and machine learning as its components. We have witnessed a phenomenal impact of this data-driven consortium of methodologies in many areas of studies, the economic and financial fields being no exception. In particular, this volume of collected works will give examples of its impact on various kinds of economic and financial modeling, prediction and forecasting, and the analysis of various phenomena which sheds new light on a fundamental understanding of the

research issues. This volume is the result of the selection of high-quality papers presented at the **Second International Workshop on Computational**Intelligence in Economics and Finance (CIEF'2002), held at the Research Triangle Park, North Carolina, United State of America, March 8–14, 2002. To complete a better picture of the landscape of this subject, some invited contributions from leading scholars were also solicited.

a

This is a preview of subscription content, <u>log in via an institution</u> to check access.

Access this chapter

Log in via an institution →

Chapter EUR 29.95

Price includes VAT (Poland)

∧ eBook

EUR 160.49

Price includes VAT (Poland)

- Available as PDF
- Read on any device
- Instant download
- Own it forever

- Available as PDF
- Read on any device
- Instant download
- Own it forever

Buy Chapter→

Buy eBook →

► Softcover Book EUR 213.99

Price includes VAT (Poland)

∧ Hardcover Book EUR 213.99

Price includes VAT (Poland)

- Compact, lightweight edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide see info
- Durable hardcover edition
- Dispatched in 3 to 5 business days
- Free shipping worldwide see info

Buy Softcover Book →

Buy Hardcover Book→

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions →

Preview

Unable to display preview. <u>Download preview PDF.</u>

Similar content being viewed by others

Predictive Methods in Economics: The Link Between in Economics and Finance: Econophysics and Artificial <u>Intelligence</u>

Chapter © 2023

Computational Thinking **Introductory Remarks**

Chapter © 2023

Data Science Technologies in Economics and Finance: A Gentle Walk-In

Chapter © 2021

References

1.1 Aha, D. (1997): Lazy Learning. Kluwer

Google Scholar

1.2 Aoki, M. (1987): State Space Modeling of Time Series. Springer-Verlag

Google Scholar

1.3 Armano, G., Minnt A., Marchesi, M. (2002): NXCS-A Hybrid Approach to Stock Indexes Forecasting. In: Chen, S.-H. (Ed.), Genetic Algorithms and Genetic Programming in Computational Finance, Kluwer

1.4 Aussem, A., Campbell, J., Murtagh F. (1998): Wavelet-Based Feature Extraction and Decomposition Strategies for Financial Forecasting. Computational Intelligence in Economics and Finance, Vol. 6, No. 2, 5-12

Google Scholar

1.5 Azoff, M. (1994): Neural Network Time Series: Forecasting of Financial Markets. Wiley

Google Scholar

1.6 Baestaens, 1).-E., Van Den Bergh, W., Wood D. (1991): Neural Network Solutions for Trading in Financial Markets, Pitman

Google Scholar

1.7 Baglioni, S., Sorbello, D., Pereira, C., Tettarnanzi, A. G. B. (2000): "Evolutionary Multiperiod Asset Allocation," In: Whitley, D., Goldberg, D., Cantti-Paz, E., Spector, L., Parrnee, I., Beyer, H. -G. (Eds.), Baglioni, S., Sorbello, D., Pereira, C., Tettarnanzi, A. G. B, 597-604. Morgan Kaufmann

Google Scholar

1.8 Balakrishnan, A. (1987): Kalman Filtering Theory. Optimization Software

Google Scholar

1.9 Balakrishnan, A. (1988): State Space Theory of Systems. Optimization Software

Google Scholar

1.10 Bauer, R., Jr. (1994): Genetic Algorithms and Investment Strategies. Wiley

1.11 Billot, A. (1995): Economic Theory of Fuzzy Equilibria: an Axiomatic Analysis. Springer-Verlag, 2nd edition

Google Scholar

1.12 Bojadziev, G., Bojadziev, M., Zadeh, L. (1997): Fuzzy Logic for Business, Finance, and Management. World Scientific

Google Scholar

1.13 Boguslayskij, 1. (1988): Filtering and Control. Optimization Software

Google Scholar

1.14 Bonabeau, E., Meyer, C. (2002): Swarm Intelligence: a Whole New Way to Think About Business. Harvard Business School Press

Google Scholar

1.15 Chang, K., Osier, C. (1994), "Evaluating Chart-Based Technical Analysis: the Head-and-Shoulders Pattern in Foreign Exchange Markets," Working Paper, Federal Reserve Bank of New York

Google Scholar

1.16 Chen, 5.-11. (2002a): Evolutionary Computation in Economics and Finance, Physica, Verlag

Google Scholar

1. Chen, S.-H. (20021r): Genetic Algorithms and Genetic Programming in Computational Finance, Kluwer

1.18 Chen, T., Chen, H. (1995): Universal Approximation to Nonlinear Operators by Neural Networks with Arbitrary Activation Functions and Its Application to Dynamical Systems. IEEE Transactions on Neural Networks, Vol. 6, 911– 917

Google Scholar

1.19 Cordon, O., Herrera, F., Hoffmann, F., Magdalena. L. (2001): Genetic Fuzzy Systems. World Scientific

Google Scholar

1.20 Crisan, I). (2001): Particle Filters-a Theoretical Perspective. In: Doucel A., Freitag, N., Cordon, N. (2001) (Eds.), Sequential Monte Carlo Methods in Practice, Springer-Verlag, 17-41

Google Scholar

1.21 Cristiarrini, N., Shawe-Taylor, J. (2000): An Introduction I Srtpport Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press

Google Scholar

1.22 Deboeck, G., Kohonen, T. (1998), Visual Explorations in Finance with Selforganizing Maps, Springer-Verlag

Google Scholar

1.23 Deng, J. (1982): Control Problems of Grey System. System and (.'ou trol Letters, No. 5, 288 299

Google Scholar

1.24 Deng, J. (1989): Introduction to Grey Syeierri Theory, Journal of Carey

1.25 Dorigo, M. (1992): Optimization, Learning and Natural Algorithms, 1'h. I).
Thesis, Politecnice di Milano, Italy, in Italian

Google Scholar

1.26 Dorigo, V1., Marriezzo, V., Colorni, A. (1996): The Ant System: Optimization by a Colony of Cooperating Agents, IEEE, Transactions on Systems, Klan. and Cybernetics, Part B, Vol. 26, No. I, 29-41

Google Scholar

1.27 Duffy, J., McNelis, P. D. (2001): Approximating and Simulating the Stoehast,k: Growth Model: Parameterized Expectations, Neural Networks, and the (ïcnet is Algorithm. Journal of Economic Dynamics and Control 25(9), 1273 130: 1

Google Scholar

1.28 Eberhart, R., Simpson, R, Dobbins, R. (1996): Computational Intelligence PC Tools. AP Professional

Google Scholar

1.21) Epstein, J., Axtell, 11. (1996): Growing Artificial Societies: Social Science from the Bottom Up. MIT Press

Google Scholar

1.30 Farr, J., Gijbels, I. (1996): Local Polynomial Modeling and Its Applications. Chapman & Hall.

1.31 Fischer, R. (2001): "l'lie New Fibonacci 'Trader: Tools and Strategies for 'Trading Success. Wiley

Google Scholar

1. Fogel, D. (1995): livolut.ionary Computation toward a New Philosophy of Machine Intelligence. IEEE Press

Google Scholar

1.33 Fogel, D., Chellapilla, K., Angeline, P. (2002): Evolutionary Computation and Economic Models: Sensitivity and Unintended Consequences. In: Chen, S. 11. (Ed.), Evolutionary Computation in Economics and Finance, Physics Verlag, 215 269

Google Scholar

1.34 Vogel, L. (1964): On the Organization of Intellect, l'h.l). "Thesis, UCLA

Google Scholar

1.35 Vogel, L. (1997): A Retrospective View and Outlook on Evolutionary Algorithms. In: Reusch, B. (Ed.), Computational Intelligence: 'Theory and Applications, 5th Fuzzy Days, Springer-Verlag, Berlin, 337 312

Google Scholar

1.36 Fogel, L. J., Owens, A..1., Walsh, NI..J. (1966): Artificial Intelligence through Simulated Evolution, Wiley

Google Scholar

1.37 Carey, NI., Johnson, D. (1979): Computers and Intractability, a Guide to the Theory of NP-(ompleteness. Freeman 1.38 I.38 Gately. E. (1996): Neural Networks for f'inancial Forecasting. Wiley

Google Scholar

1. Gencay, R.., Selcuk, I"., Whitcher, B. (2001): an Introduction to Wavelet, and Other Filtering Methods in Finance and Economies, Academic Press

Google Scholar

1.40 Granger, C., Flatanal:a. M. (1964): Spectral Analysis of Economic Thne Series. Princeton

Google Scholar

1.41 Goffe, W. (1996): SIMANN: A Global Optimization Alogorithm Using Simulated Annealing. Studies in Nonlinear Dynamics and Econometrics. Vol. I. No. 3

Google Scholar

1.42 Goffe, W., Ferrier, (1, Rogers. J. (1992): Simulated Annealing: an Initial Application in Econometrics. Computer Science in Economics and Managenrent. Vol. 5

Google Scholar

1.43 Goffe, W., Ferrier, G., Rogers. J. (1991): Global Optimization of Stat ist ienI Functions with Simulated Annealing. Journal of fir onometrics. Vol. 60. No. 1/2. January/February. 65 99

Google Scholar

1.44 Cross. S., Aron. S., Deneubourg, J. L., Pasteels, J. M. (1989): Self-organized

1.45 Hampton, J. (1997): Rough Set Theory The Basics (Part 1). Journal of Computational Intelligence in Finance, Vol. 5, No. 6, 25–29

Google Scholar

1.46 Ilampton, J. (1998): Rough Set Theory—The Basics (Part 2). Journal of Computational Intelligence in Finance, Vol. 6, No. 1, 40–42

Google Scholar

1.47 Hampton, J. (1998): Rough Set Theory The Basics (Part 3). Journal of Computational Intelligence in Finance, Vol. 6, No. 2, 35–37

Google Scholar

1.48 Harvey, A. (1989): Forecasting Structural Time Series Models and the Kalman Filter. Cambridge

Google Scholar

1.49 Hiemetra, Y. (1996): Applying Neural Networks and Genetic Algorithms to Tactical Asset Allocation, NeuroveSt Journal, 4 (3), 8–15

Google Scholar

1.50 Keber, C. (2002): Collective Intelligence in Option Pricing-Determining Black-Scholes Implied Volatilities with the Ant Programming Approach, working paper, University of Vienna

Google Scholar

1.51 Kirkpatrick, S., Gelatt, C., Vecchi, M. (1983), Optimization by Simulated Annealing, Science, Vol. 220, 671–680

Google Scholar

1.52 Kitagawa, G., Sata, S. (2001): Monte Carlo Smoothing and Self-organizing State Space Model. In: Doucet, A., Freitas, N., Gordon, N. (2001) (Eds.), Sequential Monte Carlo Methods in Practice, Springer-Verlag, 177-196

Google Scholar

1.53 Kohonen, T. (1982): Self-organized Foundation of Topologically Correct Feature Nlaps. Biological Cybernetics 43, 59–69

Article MathSciNet MATH Google Scholar

1.54 Lin, C. -T., Yang, S. -Y. (1999): Selection of Home Mortgage Loans Using Grey Relational Analysis. Journal of Grey System, Vol. 11, No. 4, 359–368

Google Scholar

1.55 Lin, C. -T., Chen, L. -H. (1999): A Grey Analysis of Bank Re-decreasing the Required Reserve Ratio. Journal of Grey System, Vol. 11, No. 2, 119–132
Google Scholar

1.56 Lin, C. -T., Chang, P. -C. (2001): Forecast the Output Value of Taiwan's Machinery Industry Using the Grey Forecasting. Journal of Grey System, Vol. 1.3, No. 3, 259 268

Google Scholar

1.57 Lo, A., Mama, ysky, HI., Wang, J. (2000): Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation, Journal of Finance. Vol. LV, No. 4, 1705–1765 1.58 Mansur, Y. (1995): Fuzzy Sets and Economics: Applications of Fuzzy Mathematics to Non-cooperative Oligopoly. Edward Elgar

Google Scholar

1.59 Marks, R. (2002): Playing Games with Genetic Algorithms. In: Chen, S. H. (Ed.), l'volutionary Computation in Economics and Finance, Physica-Verlag,:i 1 44

Google Scholar

1.60 Messier, W. 1U'., Hansen, J. V. (1988): Inducing Rule for Expert System Development: art Example Using Default and Bankruptcy Data. Management Science 34, 1403 H15

Google Scholar

1.61 Modzek, A., Skabek, K. (1998): Rough Sets in Economic Applications. In: Polkowski, L., Skowron, A. (Eds.), Rough Sets in Knowledge Discovery 2: Applications, Case Studies and Software Systems, Physica-Verlag. Chap. 13

Google Scholar

1.62 Mortensen, R. (1987): Random Signals and Systems. Wiley

Google Scholar

1.63 Osier, C'., Chang, K. (1995): Head and Shoulder: Not Just a Flaky Pattern. Staff Report: No. 1, federal Researve Bank of New York

Google Scholar

1.61 Pan, Z., Wang, X. (1998): Wavelet-Based Density Estimator Model for

Forecasting. ('output at.ional Intelligence in Economics and Finance, Vol. 6, No. 1, 13

MathSciNet Google Scholar

1.65 l'ackard, N. (1990): A Genetic Learning Algorithm for the Analysis of Complex Data, Complex Systems 4, No. 5, 543–572

MathSciNet Google Scholar

1.66 Pedrycz, W. (1997): Computational Intelligence: An Introduction. CRC I'n ss 1.67 Peray, K. (1999): Investing in Mutual Funds Using]Fuzzy Logic. CRC Press

Google Scholar

1.68 Quinlan, R. (1986): Induction of Decision Trees. iVlachine Learning 1(1), 81.

Google Scholar

1.69 Quinlan, R. (1987): Simplifying I)ecisiou 'Frees. International Journal of \Ian-Machine Studies 27 (3), 221-231

Article Google Scholar

1.70 Quinlan, R. (1993): C4. 5: Programs for Machine Learning. Morgan Kaufmann

Google Scholar

1.71 Rechenberg, 1. (1965): Cybernetic Solution Path of an Experimental Problem. Royal Aircraft Establishment, Library 'Translation No. 1122, August. Farnborough, UK 1.72 Refenes, A.-P. (1995): Neural Networks in the Capital Markets. Wiley

Google Scholar

1.73 Refenes, A.-P., Zapranis, A. (1999): Principles of Neural Model Identification, Selection and Adequacy: with Applications in Financial Econometrics. Springer

Google Scholar

1.74 Shadbolt, J., Taylor, J. (2002): Neural Networks and the Financial Markets-Predicting, Combining, and Portfolio Optimisation. Springer

Google Scholar

1.75 Schmertmann, C. P. (1996): Functional Search in Economics Irving Genetic Programming. Computational Economics 9(4), 275 298

Google Scholar

1.76 Schwefel, H. -P. (1965): Kybernetische Evolution als Strategies der Experimentellen Forschung in der Strömungst.echnik. I)iplonma, Thesis, 'kiln ncal versity of Berlin

Google Scholar

1.77 Schwwfel, II. -P. (1995): Evolution and Optimum Seeking, 'Wiley

Google Scholar

1.78 Skalkoz, C. (1996): Rough Sets help Time the Bi X. M uralvelt. Journal. Nov./Dec., 20–27

1.79 Slowinski, R., Zopounidis, C. (1995): Applications of the (tough Set. Approach to Evaluation of Bankruptcy Risk. International Journal of Intelligent Systems in Accounting, Finance and Management 4. 27-41

Google Scholar

1.80 Smithson, M. J. (1987): Fuzzy Set Analysis for Behavioral *anda* Social Sciences. Springer-Verlag, New York

Book Google Scholar

1.81 Sugeno, M., Yasukawa, T. (1993): A Fuzzy-Logic-Based *Approach* to Qualitative Modeling. IEEE Transactions on Fuzzy Systems, Vol. I, 7: 31

Google Scholar

1.82 Suykens, I., Vandewalle. J. (1998): The K.U. Leuven Time Series Prediction Competition. In: Suykens, J., Vandewalle, J. (Eds.), Nonlinear Alodeling: Advanced Black-Box Techniques, Kluwer, 241–253

Chapter Google Scholar

1.83 Takagi, 'T., Sugeno, M. (1985): Fuzzy Identification of Systems and Its Applications to.Modeling and Control. IEEE Transactions on Systems,: Alan, and Cybernetics, Vol. 15, 116-132

Google Scholar

1.84 Tac, N., Linn, S. (2001): Fuzzy Inductive Reasoning, Expectation Formation and the Behavior of Security Prices. Journal of Economic Dynamics and Control. Vol. 25, 321 361

Google Scholar

1.85 I.85 Taylor P., Abdul-Kader, Vl., Dngdale. D. (1998): Investment Decisions in

Advanced Manufacturing "i(ehnology\Fuzzy Set "T henry Approach. Ashgate

Google Scholar

1.86 Thomason, M. R. (1997): Financial Forecasting with Wavelet Filters and Neural Networks. C"DorpoLational Intelligence in Economics and Finance, Vol. No. 2, 27 32

Google Scholar

1.87 Trippi, R. It., "Turban, E. (1993): Vernal Networks in Finance and Investing.
Irwin

Google Scholar

1.88 Ici, Y.-C., Lin. C.-`I'., "Tsai, II.-.1. (2001): `Ilre Performance Evaluation Model of Stock-Listed Banks in Taiwan liv (irev Relational Analysis and Factor Analysis. 'Che Journal of (trey Systeu n. Vol. 13, No. 2, 153–164)

Google Scholar

1.89 Vapnik, V. (1998a): Statistical Learning "Theory. Wiley

Google Scholar

1.90 Vapnik, V. (1998b): The Support Vector Method of Function Estimation. In: Suykens, J.. Vandewalle, 1. (Eds.). Nonlinear Modeling: advanced Black-Box Techniques. Kluwer, Boston, 55-85

Google Scholar

1.91 Von Altrock, C. (1996): Fuzzy Logic and Neurofnzzy Applieatious iu Busirnese and finance. Prentice Hall

Google Scholar

1.92 White, IL (1988): Economic Prediction Using Neural Networks. the Case of IBM Daily Stock Returns. Proceedings of IEEE International Conference on Neural Networks, Vol. 2, IEEE, New York, 451-458

Chapter Google Scholar

1.93 White, II. (1992): Artificial Neural Networks-Approximation 'Theory and Learning Theory. Blackwell

Google Scholar

1.94 Wolberg, J. (2000): Expert Trading Systems: Modeling Financial Markets with Kernel Regression. Wiley

Google Scholar

1.95 Zirilli, J. (1996): Financial Prediction Using Neural Networks. International Thomson Publishing

Google Scholar

1.96 Zopounidis, C., Pardalos, P., Baourakis, C. (2002): Fuzzy Sets in Management, Economy & Marketing. World Scientific

Google Scholar

Author information

Authors and Affiliations

AI-ECON Research Center, Department of Economics, National Chengchi University, Taipei, Taiwan, 11623

Shu-Heng Chen

Department of Electrical & Computer Engineering, Duke University, P.O. 90291, Durham, NC, 27708-0291, USA

Paul P. Wang

Editor information

Editors and Affiliations

AI-ECON Research Center Department of Economics, National Chengchi University, 11623, Taipei, Taiwan

Shu-Heng Chen

Department of Electrical and Computer Science, Duke University, P.O. 90291, 27708-0291, Durham, NC, USA

Paul P. Wang

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, SH., Wang, P.P. (2004). Computational Intelligence in Economics and Finance. In: Chen, SH., Wang, P.P. (eds) Computational Intelligence in Economics and Finance. Advanced Information Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06373-6_1

<u>.RIS</u> <u>.ENW</u> <u>.BIB</u> <u>↓</u>

DOI Publisher Name Print ISBN

https://doi.org/10.1007/978-3- Springer, Berlin, Heidelberg 978-3-642-07902-3

662-06373-6_1

Online ISBN
978-3-662-06373-6

eBook Packages

<u>Springer Book Archive</u>

D.	ıh	lial	h		4 h	us
Pl		IISI	Π	WI	ITN	JUS

Policies and ethics [2

S	e	a	r	C	h
---	---	---	---	---	---

Search by keyword or author

Q

Navigation

Find a journal

Publish with us

Track your research