
ABSTRACT

INTRODUCTION

 

 
Traditional methods of analyzing data from psychological experiments are based on the assumption that there is a single random factor (normally participa

participants and the targets to which they respond, such as words, pictures, or individuals). The application of traditional analytic methods to the data from

comprehensive typology of designs involving two random factors, which may be either crossed or nested, and one fixed factor, condition. We present appro

power estimation for all designs. We then discuss issues of design choice, highlighting power and feasibility considerations. Our goal is to encourage approp

participants and targets.
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Psychologists learn early in their statistical training to use analysis of variance procedures (t-tests and ANOVA) to analyze data from designs in which particip

factor, whereas participants are a random factor, meaning that the participants used in any particular study are thought to be a sample of participants that m

mean condition di�erence, as well as an estimate of the uncertainty surrounding that di�erence, by examining the variability across participants (i.e., across

given the variability of participants, is su�iciently large to permit the belief that it would continue to be found with other samples of participants.

However, many questions in psychology do not lend themselves easily to these well-learned analytic approaches. Frequently, research questions demand e

di�erences should be sought. For instance, a memory researcher might be interested in memory for word lists under di�erent conditions and wish to reach 

might have been used. Likewise, a social psychologist might ask participants to respond to faces of individuals coming from two di�erent ethnic or racial ca

other samples of faces that might have been used. Additionally, consider a clinical psychologist who is interested in showing that a new therapeutic approac

data from patients who are being treated by therapists under either the new or the standard approach. Again, generalization of any di�erences should reaso

Because psychological researchers are not routinely trained in the analysis of data from designs, such as those just illustrated, that have multiple random fa

ignoring one of the random factors so that the familiar t-tests and ANOVA procedures can be used. For instance, the memory researcher would typically com

compute, for each participant, means across faces within a racial category; and the depression researcher might simply ignore the therapists in the analysis

inappropriate because they have been shown to result in seriously inflated type I statistical errors, leading researchers to claim statistically significant e�ect

Judd et al. 2012). Many failures to replicate experimental results likely stem from this (Westfall et al. 2015).

To remedy these errors, in this review we provide a thorough treatment of the design and analysis of experiments in psychology that have more than one ra

arises from a single random factor (e.g., participants), there exist multiple sources of error variation arising from multiple random factors (e.g., words as wel

general analytic approach is necessary, in which those multiple sources of random variation are explicitly modeled and estimated. This more general analyt

2012). We provide a thorough treatment of this approach in the context of psychological experimental designs having two random factors.

We begin with the familiar designs involving only one random factor, participants, and a single fixed condition factor having two levels. These are the experi

these procedures can be recast into the mixed-model framework so that the familiar analyses become special cases of mixed-model analyses.
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MIXED MODELS FOR DESIGNS WITH ONE RANDOM AND ONE FIXED FACTOR

We then turn to designs having two random factors (which we call participants and targets) and one fixed factor (which we call condition), and present the f

comprehensive typology of all such designs, including designs in which the two random factors are crossed and designs in which one random factor is neste

estimate that is modeled on Cohen's d (i.e., the standardized mean di�erence; Cohen 1988) but generalized to the current designs involving two random fac

Next we develop procedures for the estimation of statistical power in the context of the designs considered, including providing access to a web-based appl

choices, and the e�iciency of alternative designs.

In the concluding sections of the review, we expand the design possibilities, discussing designs with more than two levels of condition, with multiple fixed fa

 

 
We begin with familiar designs in which there is one fixed factor, condition, having two levels, and only one random factor, participants. For instance, imagin

participants under two conditions, with and without stress. In this context, there are two possible designs: participants are in both conditions or participant

is called a between-participant design (Smith 2014). We refer to the first design as the C design, meaning that participants are crossed with condition, and t

standard least-squares analysis for data from the C design is the paired t-test or, equivalently, a repeated-measures ANOVA. For data from the N design, the s

To recast the analysis of data from these designs into the mixed-model terminology, we first specify the possible sources of variation in the observations fro

refers to the individual participant and k to the condition under which the observation is taken. The mixed-model specification of the individual observation

The values of represent condition and are assumed to be contrast- or deviation-coded  (i.e., and ). The terms and represent the fixed e�

mixed-model terminology, is the fixed intercept and is the fixed slope of condition. What makes this a mixed model is that, in addition to these fixed sou

they vary across the participants in the design. The following are the random components of variation in the observations:

The variance attributable to participant mean di�erences is designated as . In the language of mixed models, this is the random variation across participa

participant-by-condition interaction e�ects) is . In the language of mixed models, this is the random variation across participants in their condition slop

also in the standard ANOVA approach to these designs; the mixed-model specification makes them explicit. Additionally, in the mixed-model specification, a

allowing those participants with higher mean responses to have smaller or larger condition di�erences. This covariance is typically ignored in the standard A

The mixed model given in Equation 1 can be rewritten to make clear that the and terms represent random variation in the intercepts and slopes acr

Cast this way, we have a linear model with a single predictor variable, , specifying varying intercepts and slopes over and above their fixed (or average) co

As already specified, the condition e�ect in the above model is captured by , which equals . Cohen (1988) defined the general standardized e�

observations within the conditions: 

This full model, with all the random components of variation, is estimable only when each participant is crossed with condition (as in the C design) and whe

condition). In the C design with only one replicate (i.e., one observation from each participant in each condition) and in the N design, one can still estimate t

not consider in detail designs with multiple replicates (although see the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/an

model from such a design if one had such data available. The specifications for the C and N designs become a simple matter of trimming from the full mode

One important issue in estimating the mixed model is the structure of the data file. In the typical ANOVA approach to data, each participant has one row of d

taken from a particular participant in a particular condition. For instance, if a given participant were to be observed in both conditions with three replicates 

The code for estimating the mixed model specified above for these data is as follows:

 1     

  

 

 

  

 

  

2
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DESIGNS WITH TWO RANDOM AND ONE FIXED FACTOR

In each case, the fixed e�ects are specified in the mixed model, modeling the observations as a function of condition. Implicit in the model specification are

components of variance, indicating that both the intercept and the slope for condition are allowed to vary randomly across participants. In the lme4 packag

the slope for c (and implicitly the intercept) varies across participants. The “un” option in both SAS and SPSS specifies that the random intercept and slope a

slope fixed estimates (along with standard errors) and the variances and covariance of the random intercepts and slopes. Assumptions are that the random 

no carryover or lagged e�ects).

We turn now to the C and N designs with a single replicate. In these designs, as we have said, the same underlying components of variance contribute to the

Mixed-Model Specification of the C Design

In the C design, with each participant in both conditions, the same fixed e�ects can be estimated. However, not all of the random components are estimable

the observations, it cannot be disentangled from the residual error term . Accordingly, in the mixed model code, one simply eliminates the random varian

variance. Thus, in this design, one estimates only two random variance components, participant intercepts and residual error.

The general e�ect size for this design is given as

The denominator of this e�ect size contains, as before, all three random sources of variation in the observations, but in this case two of these sources are pla

the variance due to participant slopes.

The test of the condition e�ect is based on a t-statistic that divides the estimated mean di�erence between the conditions by its estimated standard error. In

include the participant slope variance and the residual error variance. The variance attributable to participant intercepts (or means) does not contribute to t

operative e�ect size as the mean condition di�erence divided only by those variance components that contribute to its standard error. Accordingly, for the C

In any sample of data, the operative e�ect size is estimated as the mean observed condition di�erence divided by the square root of the estimated residual e

than operative, e�ect size is typically reported. We give both to clarify those variance components that do and do not contribute to the standard error of the

Mixed-Model Specification of the N Design

In this design—the classic two-group between-subjects design—each participant is observed in only one condition. As a result, the error variance contains a

Accordingly, in the mixed-model specification, no random components are estimable except for residual error. In the computer code to estimate and test the

The general e�ect size for this design is

As in the general e�ect size for the C design, the brackets indicate that the variance due to participant intercepts and participant slopes is now part of the res

the square root of the estimated residual error variance.

Because variances due to both participant intercepts and participant slopes contribute to the estimated residual error in this design, all three components c

operative e�ect size is identical to the general e�ect size.

The mixed-model specifications for the C and N designs yield tests of the condition di�erence that are identical to the comparable standard ANOVA approac

data. The standard ANOVA approach treats the individual participant as the unit of analysis and does not normally make explicit all sources of variation in th

analysis and allows multiple simultaneous sources of random variation in the data. For this reason, the mixed-model approach is appropriate for the analys

 

 

 



With only one random factor, the design alternatives are limited. With two random factors, the design possibilities grow considerably. The random factors m

may also be crossed with or nested within the levels of the fixed factor. In this section, we lay out all the design possibilities. We continue to refer to the fixed

We assume the goal is to estimate and test the condition di�erence so that inferences can be made to other samples of participants and targets that might h

We start with the most general design, in which all factors are crossed with each other (every participant responds to every target in both conditions) and in 

each target in each condition). We refer to this as the most general design because it is only in the context of this design that we can define and estimate all t

design can we give the full mixed-model specification and its associated code for estimation. We then provide a general e�ect size definition as the magnitu

We turn next to more widely used designs that do not include multiple replicates and in which, therefore, not all of the variance components are estimable. 

which one random factor is nested within the other. Accordingly, the designs that we consider, and their mixed-model specifications, bridge two rather dispa

considered primarily by experimental researchers in psychology and linguistics (Baayen et al. 2008, Clark 1973, Judd et al. 2012); designs with nested ran

commonly referred to as multilevel or hierarchical linear models (Hox 2010, Raudenbush & Bryk 2002, Snijders & Bosker 2011).

As was the case for the specific designs with participants as the only random factor that were considered in the previous section, these specific designs di�e

contributes to the observations can be estimated. For each design, we give those variance components that are estimable and those that are not and then p

condition di�erences with generalization across both participants and targets. For each design, we also give appropriate design-specific e�ect sizes.

Mixed-Model Specification and E�ect Size for the Most General Design

In this section, we present the full mixed-model specification for designs with the two random factors of participants and targets and the fixed factor of cond

design in which all three factors are fully crossed and in which there are multiple replicates. This is the most general design in the sense that only in this des

represent modifications of this design in which some of the observations are systematically missing and, accordingly, in which some of the variance compon

We assume a single dependent variable with variation accruing from a condition di�erence; a series of random e�ects attributable to the underlying factors 

participant to the j  target in the k  condition is

and the following are the sources of variation in :

As above, and in this model represent the fixed e�ects and capture, respectively, the overall mean response and the condition di�erence in responses. 

given intuitive interpretations in Table 1 . To show more clearly the specification of some of these components as random intercept components and others

On the basis of this model and again using Cohen's (1988) specification of the e�ect size, the following can be defined as the general e�ect size for this desi

For mixed-model estimation, the data file is again structured so that each individual observation is a row of data. The code for estimating e�ects for data fro

Variance or covariance component

Participant 

Participant 

Participant 

condition d

Target inter

th th

 

  

Open Table 1  fullscreen 

Table 1 

Definitions of random variance and covariance components in the designs considered in this review

Toggle display: Table 1    
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Variance or covariance component

Target slope

Target inter

differences

Participant-

toward part

Participant-

participant–

Participant-

also show l

Residual er

Variables: C, fixed condition factor; E, error; P, random participant factor; T, random target factor.

This code is an extension of the code given above for designs with one random factor (see Mixed Models for Designs with One Random and One Fixed Factor

intercepts and slopes due to participants, those due to targets, and finally those due to the participant-by-target interaction.

As before, not all variance components contribute to the standard error used to test the condition di�erence in this design. Accordingly, the operative e�ect 

those components that contribute to its standard error, is:

In the following sections, we systematically define the possible designs that involve two random factors (participants and targets) and a single fixed factor (c

cases of the most general design considered above but with systematically missing observations. Each design provides an estimate of the fixed e�ects of int

some of these components are confounded with each other, and thus model specification and e�ect sizes must be tailored to each particular design.

Design Possibilities

To define the full range of designs that have the three factors of condition, participants, and targets, we must consider the three possible pairs of these facto

two factors may be crossed or nested. We use C and N to indicate whether the factors in each pair are crossed or nested, respectively. Each design is thus ide

nested within condition; the second C or N indicates whether targets are crossed with condition or nested within condition; and, finally, the third letter defin

the two random factors are nested, there are two possibilities: Either targets are nested within participants (meaning that each participant responds to a un

by a unique set of participants). In the first case, the final letter in the definition of each design is NP, meaning that participants are the higher-level factor wi

the final letter in the definition of each design is NT.

The designs are listed in Table 2 ; each design is identified by the labels defined above. We now further define and illustrate each of these designs. We start w

with each other.

Open Table 2  fullscreen 

Table 2 

Typology of designs with two random factors [participants (P) and targets (T)] and one fixed factor (condition)

Toggle display: Table 2    
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Designs with crossed random factors.

The four cells in the first column of Table 2 define four designs with the final letter C. These designs are illustrated in Figure 1 a . For ease of depiction, in the

likely be in any actual study.

 

The first design, CCC, is the fully crossed design in which every participant responds to every target twice, once in each condition. Imagine a design in which

faces, one version morphed towards a prototypic White face and the other morphed towards a prototypic Black face. Faces constitute the random target fac

face in both its White-morphed version and its Black-morphed version (i.e., condition).

The CNC design is one in which every target is responded to by every participant, but each target is in only one condition. Imagine a variation of the previou

actual faces of White and Black individuals rather than morphed versions of faces. Thus, each individual face is either White or Black, so targets are nested w

White and half Black.

In the NCC design, participants are nested within condition and targets are crossed with condition. Imagine that participants complete a series of target judg

conditions. However, every target is judged under both load conditions, albeit by di�erent participants.

In the NNC design, both random factors are nested within condition. Imagine that participants make career likelihood judgments of faces (e.g., “How likely i

respond only to one set or the other. Gender of target is the condition variable of interest.

Designs with nested random factors.

Designs in the second and third columns of Table 2 have one of the two random factors nested within the other. In the second column, in which targets are n

is responded to by its own unique set of participants. These designs are illustrated by the matrices in Figure 1b .

The CCNP and CCNT designs have one random factor nested within the other, but both of these factors are crossed with condition. The classic nested design

instructor. In one version of this design, the CCNP design, the instructors evaluate their students in two di�erent conditions or subjects, math and language. 

The question is whether the evaluations depend on the subject matter. In the CCNT design, the students are now the participants and they evaluate their ins

instructors, but these two groups have switched their roles in terms of the design: The instructors elicit responses, and we thus designate them as the target

random factors are crossed with condition.

Figure 1 

Illustrative matrices for all designs having two random factors, participants (P, rows) and targets (T, columns), and one fixed factor, condition, with two levels (A and B) under which particular observation

Click to view

(/docserver/fulltext/psych/68/1/ps680601.f1.gif) Download as PowerPoint (/docserver/fulltext/psych/68/1/ps
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In the case of nested random factors where one of the factors is crossed with condition and the other is nested within condition, the higher-order random fa

of the cells in the second and third columns of Table 2 define impossible designs. In the CNNP design, targets are nested within participants, participants are

each asked to nominate and judge their two closest male and two closest female friends. Thus, each participant has a unique set of targets (friends) who are

di�erent ratings to their nominated male friends than their female friends.

In the NCNT design, participants are nested within targets, targets are crossed with condition, and participants are nested within condition. In this case, the 

common (male) friend, the target. Participants (those who do the rating of their common nominating friend) are now nested within gender (their own), but t

The final two designs of Table 2 are the fully nested designs, NNNP and NNNT, in which either targets are nested within participants or the other way around

male and female participants are recruited, and they nominate and rate as targets two friends of only their own gender. In this case, targets are nested withi

the NNNT design, again imagine that people nominate their two friends, who are, again, the same gender as the nominating person. However, this time, the

(target). Participants are now nested within targets and both are nested within condition (gender).

In addition to these designs, there are two final designs, used with some frequency, in which participants and targets are in fact confounded, with just a sing

Imagine research in which each participant thinks of a single friend and rates him or her, either in one condition only or in both. Thus participant and target 

The analysis of this design is formally equivalent to those with one random factor that we considered above. However, in this case the random factor is not p

as well as their interaction.

Other designs.

Table 2 provides a coherent way of defining the possibilities with two random and one fixed, two-level factor. However, other possibilities deserve discussio

First, there is a variation on the fully crossed CCC design that we call the counterbalanced design (Westfall et al. 2014). This is a fully crossed design in the s

conditions. Unlike the CCC design, however, each participant responds to each target in just one condition. As shown in Figure 1c , participants and targets a

observed. In the CCC design, condition, participants, and targets are fully crossed, whereas in the counterbalanced design, condition is confounded with the

problems, some while under cognitive load and others without load. Every participant does all problems, but the division of the problems between the half 

Second, there are four designs that we refer to as replication designs in that they replicate some of the designs of Table 2 with multiple sets of participants a

from the same participant, target, and condition). We mean something entirely di�erent by replication designs, i.e., that an entire previously defined design

row of Table 2 , in which both participants and targets are crossed with condition. Suppose that, rather than fully crossing participants and targets, we grou

each group, participants and targets are fully crossed, but there are multiple such groups. This design essentially replicates the CCC design many times, with

Again, a replication is defined as a specific group or subset of participants and targets. In Figure 1c we have illustrated the R(CCC) design with the number o

example, suppose participants are put in groups of four and everyone in a particular group responds to the same four targets twice, once in one condition a

of eight replications. The advantage of this design over the fully crossed design is that it potentially reduces participant load (i.e., participants do not need to

for statistical e�iciency reasons considered below (see Power Considerations and Research Design).

The R(CCC) design is the replication design from the first row of Table 2 . The other three replication designs correspond to the remaining three rows of Tabl

design replicated multiple times with di�erent sets of participants and targets; each target occurs in only one condition or the other. The R(NCC) design is th

participants nested within condition and targets crossed with condition. And finally, the R(NNC) design is the NNC design with multiple replications of di�er

These replication designs, with participants crossed with targets in each replication, become the nested designs of the second and third columns of Table 2 

R(CCC) design becomes the CCNP design if each replication contains only a single participant, responding to the targets that are unique to that replication; it

participants in that replication. The other replication designs also become the nested designs of the third and fourth columns of Table 2 when the number o

Design-Specific Estimation and E�ect Sizes

In this section, we discuss the mixed-model specification that estimates the condition di�erence given all of the random variance components that are estim

that, along with residual error, contribute to the total variation in observations. These are defined in Table 1 . In the fully crossed design with multiple replic

earlier, all of these variance components are estimable. Accordingly, we gave the mixed-model code in SAS, SPSS, and R; this code specifies how one estima

sizes for this design; the general e�ect size is defined as the mean condition di�erences divided by all six variance components plus the residual variance, an

components that contribute to the standard error of the condition di�erence.

In the second column of Table 3 , we present the general e�ect sizes for all of the designs that we have defined. (The third column of this table lists the nonc

the section below devoted to that subject.) Consistent with our earlier treatment of designs that have participants as the only random factor, the confoundin

denominators of the general e�ect sizes include, for all designs, all six variance components defined in Table 1 plus random error variance, but many of thes



indicates the component that is estimable in the mixed-model specification, and the components that follow within the brackets are those that are confoun

Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702). All the information necessary for specify

Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702), we give the code (again in SAS, SPSS, an

general e�ect size in Table 3 . The rule is that one specifies as random e�ects those variance components that are not contained in brackets in the denomina

variance is included in the model by default and does not need to be specified explicitly.)

Designs

CCC

CNC

NCC

NNC

CCNP

CCNT

CNNP

NCNT

NNNP

NNNT

Counterbalanced

R(CCC) Same as CCC

R(CNC) Same as CNC

R(NCC) Same as NCC

R(NNC) Same as NNC

a
Brackets indicate the confounding of variance components. All variance components in the noncentrality parameters are defined in Table 1. The number of participants is p and the number of targets is q. In replication des

In the following paragraphs we provide illustrations for a few of the designs of how one goes from the general e�ect sizes in Table 3 to the mixed model cod

psych-122414-033702) for each design. We also briefly discuss for each design the estimable components that do not contribute to the standard error of th

operative e�ect sizes (which are listed in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-0337

The first design we consider is the CCC design. The only use of brackets in the denominator of its general e�ect size in Table 3 is , which indicat

variance. Accordingly, in modifying the code given in the section Mixed-Model Specification and E�ect Size for the Most General Design (the most general de

random condition slopes for the participant-by-target interaction. Because participants and targets (and their interaction) are crossed with condition, the in

di�erence, although those components are estimable and should be included in the model.

Second, the NCC design has two sets of brackets in the denominator of its e�ect size. Variance attributable to the participant by condition interaction is conf

triple interaction are confounded with the residual error variance. Thus, the code must be modified to estimate only random participant intercepts and rand

condition di�erence in this design except that due to target intercepts.

As a third example, the NCNT design has three estimable components, those due to target variance, target by condition variance, and residual variance. Thu

the implicit residual error term. Target intercept variance, although estimable, does not contribute to the standard error of the condition di�erence.

Open Table 3  fullscreen 

Table 3 

General e�ect sizes (d) and noncentrality parameters for the designs of Table 2 and Figure 1 a

Toggle display: Table 3    
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STATISTICAL POWER FOR DESIGNS WITH TWO RANDOM FACTORS

POWER CONSIDERATIONS AND RESEARCH DESIGN

At the bottom of the first column of Table 3 , we indicate that the e�ect sizes for the four replication designs are identical to those of the parallel designs in w

all targets). Thus, for instance, the e�ect size for the R(CCC) design is identical to that given for the CCC design. The syntax for these designs is also the same 

replications in the model as an additional fixed factor (along with the fixed condition-by-replications interaction).

We end this section with a final warning on model specification. We have seen published analyses of designs with crossed random factors of participants an

within participants (e.g., Toma et al. 2012). Typically in diary studies, for instance, days of measurement are crossed with participants but are treated as nes

been used in the literature for some time, whereas models for crossed random factors are a more recent development. The misspecification of a crossed des

risks serious inflation of type I errors if in fact there is nonzero target variance (Judd et al. 2012). The lesson is that model specification should follow from t

 

 
In this section and in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702), we provide the

designs that we have covered. We discuss the general approach to power estimation and then provide a web-based application that computes power for all

that involve two crossed random e�ects. The current application (located online at http://jakewestfall.org/two_factor_power/ ( http://jakewestfall.org/

both crossed and nested random e�ects, as well as the replication designs.

Our approach to statistical power estimation is consistent with the general approach laid out by Cohen (1988). One begins by specifying both a null hypothe

some magnitude. Power is defined as the probability of correctly rejecting the null hypothesis when the alternative hypothesis is correct. To compute powe

di�erence for each design; these are given in the denominators of the design-specific operative e�ect sizes (see the Supplemental Appendix (http://www.

are then weighted appropriately by the sample sizes involved in the prospective study [total numbers of participants (p) and targets (q) in the design and nu

the hypothesized true e�ect, which is presented in the third column of Table 3 for each design. One can think of the noncentrality parameter as approximat

denominator of the noncentrality parameter can be thought of as the expected standard error of the condition mean di�erence. When squared and multipli

as the expected mean square (EMS) for the condition factor (Winer 1971).

Given degrees of freedom for this noncentrality parameter, power can be computed by examining areas under the noncentral t-distribution, given the multiv

parameters pool or combine various relevant variance components, the degrees of freedom of the noncentral t must be approximated. We use the Satterthw

Expressions for the approximate degrees of freedom for each design are given in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/

We provide a web-based application ( http://jakewestfall.org/two_factor_power/ (http://jakewestfall.org/two_factor_power/)) that computes power fo

targets,  the hypothesized mean di�erence or e�ect size, and the relevant variance components. In the application, the user has a choice between two di�e

inputs the mean di�erence expected and estimated values for all of the estimable variance components. An o�en-simpler option is to input what might be t

relative magnitude of the estimable variance components for each design (the proportion of the total variance in the observations attributable to a particula

Partitioning Coe�icients (Goldstein et al. 2002), and designate them as V (e.g., for participant intercept variance, for target slope variance). By defini

 

 
All designs permit an estimate of the condition di�erence. Therefore, in making a decision about which design to use, the most important considerations ar

and Feasibility Considerations. In this section, we consider those factors influencing the power to detect the anticipated condition di�erence.

In general, the smaller the variance components that contribute to the noncentrality parameter (or operational e�ect size) and the larger the relevant samp

determined by the participant variance components and the participant sample size. In the designs that we are now considering, power is determined by th

these matter varies from design to design. The important point, however, is that we must think in terms of multiple relevant variance components and mult

To increase power in designs with participants as the only random factor, researchers can either decrease the error variability in the data or increase the num

participants are obvious. Those associated with decreasing participant variability are less obvious. Selecting participants who are relatively homogeneous o

so, however, restricts one's ability to generalize observed results to other samples that are not so restricted.

The same considerations hold in thinking about designs with multiple random factors, in which variance components due to targets and their sample size, i

dramatically increases as the number of targets in a design increases. Additionally, if we restrict the variance attributable to targets through pretesting, remo

research on face perception to edit target faces to eliminate facial hair and other idiosyncrasies. However, restricting target variance imposes a cost in that o

same power considerations apply to the sampling of targets as to the sampling of participants. Larger and more homogeneous samples of both increase pow

Increasing the Sample Sizes
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In designs with just one random factor, as the participant sample size increases, power eventually approaches one. However, in many of the designs conside

sample size of the other random factor increases power, but generally to a limit of less than one. This is a surprising result; in our experience, many research

adequate power. When the number of targets in a design is small, power will increase as the participant sample size increases but may asymptote at levels t

number of targets used is typically substantially smaller than the number of participants [e.g., a meta-analysis by Bond & DePaulo (2008) in one research d

think that power is determined only (or primarily) by the sample size of participants.

To illustrate, in Figure 2 we plot the power to detect a medium e�ect size of d = 0.5 in the CNC design as a function of number of participants under di�erent

much variance is due to targets and their interaction with condition, 10% or 30% of the total variance. When the number of targets is small or when the targe

 

A similar phenomenon occurs in nested designs (targets within participants or participants within targets), but only for the lower-level factor. For example, i

the maximum attainable power is less than one if the participant sample size is held constant and the target sample size is increased, but power does appro

sample size of the higher-level factor necessarily entails increasing the sample size of the lower-level factor, but the reverse is not true.

Assuming that one is able to vary either the participant sample size or the target sample size (or both), which is expected to have a greater e�ect on statistic

the participant and target variance components, and the design of the experiment. The definitive answer is contained implicitly in the noncentrality parame

First, assuming crossed random factors, the larger the variance components associated with one random factor (relative to the other random factor), the mo

variances are larger than those due to targets, then increasing the sample size of participants reaps greater benefits than increasing that of targets.

Second, if the sample sizes of targets and participants are substantially di�erent, then there will generally be a greater power benefit to increasing the size o

associated variance components. For instance, if one sample size is 300 units and the other is 10, then adding an additional 10 units to the larger sample size

10 units to the smaller sample size (for a new total of 20).

Third, all else being equal, it is better to increase the sample size of a random factor that is nested within condition than one that is crossed with condition. T

condition di�erence depends on both the intercept and slope variance components of that factor, whereas when the random factor is crossed with conditio

Fourth, in a design in which one random factor is nested within the other (e.g., targets within participants), it is usually more e�ective to increase the sample

As discussed above, the maximum attainable power level when increasing the lower-level sample size in a nested design is, in general, less than 1.0. Accordi

power increases more quickly by increasing the higher-level sample size than by increasing the lower-level sample size.

Design Choices: Power and Feasibility Considerations

Power is not the only consideration guiding the choice of design; feasibility issues also figure prominently. We discuss some of those issues in this section.

Figure 2 

Plot of statistical power as a function of the total number of participants for the CNC (P and T crossed, P crossed with C, and T nested in C) design. The number of targets has been set to either 8 or 32. Th

. Note that these other variance components a�ect only the rate at which the power functions converge to their asymptotes; they do not a�ect the maximum attainable power values, whi

error; P, random participant factor; T, random target factor.
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COMPLICATIONS AND EXTENSIONS

Although power will o�en increase dramatically as the target sample size increases, sometimes it is not feasible for participants to respond to a large numbe

random factors. Researchers o�en assume that a crossed design is more powerful, but in fact it can be shown that for any crossed design, a nested version o

relationships between the random factors and condition, but in which every participant receives di�erent targets—is always more powerful. This di�erence 

number of targets even as the number of responses per participant remains constant.

However, nested designs may in some contexts require unreasonable numbers of targets (the number of participants times the number of responses per pa

then the CCC design involves responses to only 15 targets, whereas the CCNP design involves responses to 450 targets, resulting in a potentially dramatic inc

find so many targets. A reasonable alternative is to consider the R(CCC) design, containing, for instance, three replications of the CCC design, with 10 particip

the total number of targets has gone up threefold over the number in the CCC design. Generally speaking, in cases in which each response imposes a consid

across di�erent replications of a design, rather than to limit the number of targets by the use of a design in which all participants respond to the same set of

If one has a choice between crossing a random factor with condition and nesting that random factor within condition, then one should always choose to cro

due to a random factor contributes to the noncentrality parameter (making it smaller) when that factor is nested within condition, but not when it is crossed

generally better to cross whichever factor has the larger anticipated variance components. Of course, there are feasibility issues that arise in considering wh

of order and carryover e�ects, as well as the potential suspicion that participants may develop about the study's purpose. These issues do not arise if the cr

Finally, if one is using a design with nested random factors and one has the choice of which is the higher-order and which the lower-order factor, then it is al

participants have larger associated variance components than targets, then a design that nests participants within targets is preferable to one that nests tar

higher-level factor.

 

 
Our designs have assumed only two random factors and one fixed factor having only two levels. We have also assumed that when one factor is nested within

We first discuss the issue of nonrandom nesting and then turn to design extensions.

Nonrandom Nesting

When a random factor is nested within condition, di�erences attributable to that random factor are confounded with condition di�erences. With random as

which is not possible with nonrandom assignment. This is as true of targets as it is of participants. Hence, nonrandom assignment of either participants or ta

When one of the two random factors is nested within the other, either targets within participants or participants within targets, we have assumed random as

case? For simplicity, we rely on the situation in which targets are nested within participants, but the following considerations apply under the reverse nestin

participant di�erences, resulting in covariances between participant and target intercepts and (perhaps) condition slopes. In many situations, it is likely tha

have associated higher means). This positive covariance augments the variance components of participants, which generally results in less e�icient tests of 

is likely. However, nonrandom assignment of targets to participants does not result in bias in the estimate of the condition di�erence, so long as participants

assigned to condition. In other words, in a fully nested design, nonrandom assignment of the lower-order random factor to levels of the higher-order one (re

condition di�erence estimate so long as the higher-order random factor is still randomly assigned to condition levels.

In the replication designs, participants and targets are nested within each replication. We have assumed random assignment of both factors to each replicat

experiment intact and constitute the replications, then the replications o�en should be treated as an additional random factor in the design specification ra

replication designs. In consequence, one must have su�icient numbers of replications, because the sample size of this factor now becomes relevant in deter

Design Extensions

As discussed in the previous section, replications in the replication designs should be considered a random factor in the case of nonrandom nesting within r

present participants with primes and ask them to respond to subsequently presented targets. In most cases, one should treat both primes and targets, in ad

review, we can extend the designs and models to cover these scenarios. Additional random factors lead to additional complexities in specifying the random 

exponentially if the random factors are all crossed with each other (as in the priming example). Condition slope variance components must be specified in t

though the complete model specification is possible, it may be necessary to specify a large number of variance components, leading to possible convergenc

recommended specifying the complete underlying model (including all random variances and covariances that are estimable; see Barr et al. 2013), a recom

estimating the model, respecification may help by dropping some of the variance components that represent higher-order interactions that might reasonab

Our designs also have only one fixed factor, condition, with only two levels. In many experiments there are more fixed factors, generally crossed and o�en w

the e�ects of those contrasts tested as single-degree-of-freedom tests, additional fixed factors present no further problems other than, again, the complexit

random factors that are crossed with those additional fixed factors (and with the interactions of fixed factors).
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There may also be continuous covariates that one would like to include in the fixed part of the model. We strongly recommend centering such covariates (Ju

and fixed parameter estimates (including the condition di�erence).

Finally, we have assumed completely balanced research designs with no missing data. Mixed-model estimation can generally be accomplished with missing

lost, a highly dubious assumption. More detail on missing data is contained in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10
 

 
There is extensive literature on what are called dyadic designs (Kenny et al. 2006), in which participants interact with other participants. Dyadic designs are

most natural when the targets are people; nonetheless, even when the targets are inanimate, each observation involves a dyad or a pair.

One advantage of viewing studies with participants and targets as dyadic designs is that there is an established tradition of quantifying the random sources 

relative amount of variance of the di�erent components can be very helpful in planning a study. Designs using the social relations model (SRM) are understo

The SRM examines observations taken from actors about partners (Kenny et al. 2006). In the parlance of this review, an actor is a participant and a partner 

relationship, i.e., actor×partner interaction. In most applications that use the SRM, there is no fixed variable such as condition, so variances due to condition

actor, partner, and relationship. For instance, Hönekopp (2006) had participants in three studies judge the physical attractiveness of targetsʼ faces using ph

was due to the participant or actor, 26% due to the target or partner, 33% due to the relationship or participant×target interaction, and the remaining 26% d

partners, and knowledge of these variances would prove useful in planning studies on interpersonal attraction.

Although all the designs in this review can be viewed as dyadic designs, only one of the designs is a SRM design: the CCC design, which is called the half-bloc

the same set of partners (i.e., targets). The prototypical SRM design, however, involves a case in which the actors and partners are the same group of people

not considered in this review (see, however, the extensive discussion in Kenny et al. 2006).

Many dyadic designs, like the round robin design, are reciprocal in the sense that observations accrue from both participant A responding to target B and fro

target. The CCC design would be a reciprocal design in the following situation: Consider a study in which a sample of men interact with a sample of women; 

were interested in the e�ect of gender, then we could view the study as a fully crossed design in which, for the male judge condition, men are the participan

participants and the same men are the targets. This SRM design is referred to as the asymmetric block design.

Other designs that we have considered can be made into reciprocal designs by combining them. For instance, in the example we used for the CCNP design, t

CCNT design, the students evaluate their instructor in math and language. If we obtained data from both students and teachers in the same study, we would

reciprocal one-with-many study. Other designs can also be combined to form reciprocal designs, as is discussed in the Supplemental Appendix (http://ww
 

 
In psychology experiments, we frequently ask participants to respond to targets (e.g., faces, words, other people) in various experimental conditions. In suc

other samples of participants and, typically, other samples of targets that might have been used. To permit this, it is essential that the analysis of the resulti

targets or ignoring the variation they induce, leads to serious bias and, we suggest, failures to replicate experimental e�ects when other samples of targets a

In this review, we provide an exhaustive typology of designs based on the nesting or crossing of three factors (participants, targets, and condition) in such ex

estimates of condition e�ects while treating both participants and targets as random factors. Additionally, we provide tools to estimate the e�ect size and st

We conclude by emphasizing the importance of considering targets as well as participants in determining statistical power. We also discuss considerations t

appropriate designs and analytic models that incorporate target variation and thus permit conclusions that are more likely to replicate with other samples o
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