
ABSTRACT

INTRODUCTION

 

 
Traditional methods of analyzing data from psychological experiments are based on the assumption that there is a single random factor (nor

mally participants) to which generalization is sought. However, many studies involve at least two random factors (e.g., participants and the ta

rgets to which they respond, such as words, pictures, or individuals). The application of traditional analytic methods to the data from such st

udies can result in serious bias in testing experimental e�ects. In this review, we develop a comprehensive typology of designs involving two r

andom factors, which may be either crossed or nested, and one fixed factor, condition. We present appropriate linear mixed models for all de

signs and develop e�ect size measures. We provide the tools for power estimation for all designs. We then discuss issues of design choice, hig

hlighting power and feasibility considerations. Our goal is to encourage appropriate analytic methods that produce replicable results for studi

es involving new samples of both participants and targets.
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Psychologists learn early in their statistical training to use analysis of variance procedures (t-tests and ANOVA) to analyze data from designs in

which participants respond in various experimental conditions. In these designs and analyses, condition is a fixed factor, whereas participant

s are a random factor, meaning that the participants used in any particular study are thought to be a sample of participants that might have b

een used. In analyzing the data from such experiments, one obtains an estimate of the mean condition di�erence, as well as an estimate of th

e uncertainty surrounding that di�erence, by examining the variability across participants (i.e., across the random factor in the design). The g

oal is to determine whether the mean condition di�erence, given the variability of participants, is su�iciently large to permit the belief that it

would continue to be found with other samples of participants.

However, many questions in psychology do not lend themselves easily to these well-learned analytic approaches. Frequently, research questi

ons demand experiments that involve more than a single random factor across which generalization about condition di�erences should be so

ught. For instance, a memory researcher might be interested in memory for word lists under di�erent conditions and wish to reach conclusio

ns that generalize both to other samples of participants and to other samples of words that might have been used. Likewise, a social psycholo

gist might ask participants to respond to faces of individuals coming from two di�erent ethnic or racial categories. Here the goal would be to r
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MIXED MODELS FOR DESIGNS WITH ONE RANDOM AND ONE FIXED FACTOR

each conclusions that generalize both to other participants and to other samples of faces that might have been used. Additionally, consider a

clinical psychologist who is interested in showing that a new therapeutic approach for the treatment of depression is more e�ective than the

standard approach. He or she might collect data from patients who are being treated by therapists under either the new or the standard appr

oach. Again, generalization of any di�erences should reasonably be sought both across other patients and across other therapists that might

have been studied.

Because psychological researchers are not routinely trained in the analysis of data from designs, such as those just illustrated, that have multi

ple random factors, all too o�en the data from such designs are inappropriately analyzed by collapsing across or ignoring one of the random f

actors so that the familiar t-tests and ANOVA procedures can be used. For instance, the memory researcher would typically compute a mean s

core for each participant for the word list as a whole; the social psychologist would compute, for each participant, means across faces within

a racial category; and the depression researcher might simply ignore the therapists in the analysis. If the goal is to reach conclusions that gen

eralize to both random factors, then these analyses are likely inappropriate because they have been shown to result in seriously inflated type

I statistical errors, leading researchers to claim statistically significant e�ects that may be unlikely to replicate with di�erent samples of word

s, faces, or therapists (Clark 1973, Judd et al. 2012). Many failures to replicate experimental results likely stem from this (Westfall et al. 2015

).

To remedy these errors, in this review we provide a thorough treatment of the design and analysis of experiments in psychology that have mo

re than one random factor. In such experiments, rather than having a single source of error variation in the data that arises from a single rand

om factor (e.g., participants), there exist multiple sources of error variation arising from multiple random factors (e.g., words as well as partici

pants, faces as well as participants, therapists as well as patients). Given this fact, a more general analytic approach is necessary, in which tho

se multiple sources of random variation are explicitly modeled and estimated. This more general analytic approach relies on what are called

generalized linear mixed models (Bolker et al. 2009, Stroup 2012). We provide a thorough treatment of this approach in the context of psych

ological experimental designs having two random factors.

We begin with the familiar designs involving only one random factor, participants, and a single fixed condition factor having two levels. These

are the experimental designs for which the well-learned t-tests and ANOVA procedures are appropriate. We show how these procedures can b

e recast into the mixed-model framework so that the familiar analyses become special cases of mixed-model analyses.

We then turn to designs having two random factors (which we call participants and targets) and one fixed factor (which we call condition), an

d present the full mixed model that identifies all the sources of variation in the resulting data. We develop a comprehensive typology of all su

ch designs, including designs in which the two random factors are crossed and designs in which one random factor is nested within the other.

For each design, we give specifics about estimation and discuss an e�ect size estimate that is modeled on Cohen's d (i.e., the standardized m

ean di�erence; Cohen 1988) but generalized to the current designs involving two random factors.

Next we develop procedures for the estimation of statistical power in the context of the designs considered, including providing access to a w

eb-based application for power estimation. In light of this, we discuss considerations relating to sample sizes, design choices, and the e�icien

cy of alternative designs.

In the concluding sections of the review, we expand the design possibilities, discussing designs with more than two levels of condition, with

multiple fixed factors, with more than two random factors, and with dyadic data.

 

 
We begin with familiar designs in which there is one fixed factor, condition, having two levels, and only one random factor, participants. For in

stance, imagine that we are interested in task performance under stress. We are comparing the responses of participants under two condition

s, with and without stress. In this context, there are two possible designs: participants are in both conditions or participants are in only one co

ndition. The former is typically called a within-participant design, whereas the latter is called a between-participant design (Smith 2014). We

refer to the first design as the C design, meaning that participants are crossed with condition, and the second as the N design, meaning that p



articipants are nested within the levels of condition. The standard least-squares analysis for data from the C design is the paired t-test or, equi

valently, a repeated-measures ANOVA. For data from the N design, the standard analysis is the independent samples t-test or a between-subj

ect ANOVA.

To recast the analysis of data from these designs into the mixed-model terminology, we first specify the possible sources of variation in the ob

servations from these designs. We assume participants are measured on a single dependent variable, , where i refers to the individual parti

cipant and k to the condition under which the observation is taken. The mixed-model specification of the individual observations can be writt

en as follows:

The values of represent condition and are assumed to be contrast- or deviation-coded  (i.e., and ). The terms and repres

ent the fixed e�ects and capture the overall mean response ( ) and the condition di�erence in responses ( ). In the mixed-model terminol

ogy, is the fixed intercept and is the fixed slope of condition. What makes this a mixed model is that, in addition to these fixed sources of

variation in the data, there are multiple sources of variation that are random in the sense that they vary across the participants in the design.

The following are the random components of variation in the observations:

The variance attributable to participant mean di�erences is designated as . In the language of mixed models, this is the random variation a

cross participants in their intercepts. The variance attributable to participant di�erences in the condition e�ects (i.e., participant-by-condition

interaction e�ects) is . In the language of mixed models, this is the random variation across participants in their condition slopes. And fin

ally, represents residual random error variation in the observations. These variances are also in the standard ANOVA approach to these des

igns; the mixed-model specification makes them explicit. Additionally, in the mixed-model specification, a possible covariance is explicitly co

nsidered between participant intercepts and their slopes,

allowing those participants with higher mean responses to have smaller or larger condition di�erences. This covariance is typically ignored in

the standard ANOVA approach.

The mixed model given in Equation 1 can be rewritten to make clear that the and terms represent random variation in the intercepts

and slopes across participants:

Cast this way, we have a linear model with a single predictor variable, , specifying varying intercepts and slopes over and above their fixed

(or average) components.

As already specified, the condition e�ect in the above model is captured by , which equals . Cohen (1988) defined the general st

andardized e�ect size d as the raw mean di�erence divided by the square root of the pooled variance of the observations within the condition

s: 

This full model, with all the random components of variation, is estimable only when each participant is crossed with condition (as in the C de

sign) and when there are multiple replicates (i.e., multiple independent observations from each participant in each condition). In the C design

with only one replicate (i.e., one observation from each participant in each condition) and in the N design, one can still estimate the fixed e�e

cts, but there is a confounding of the three random variance components. Although we do not consider in detail designs with multiple replica

tes (although see the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702)), we
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want to provide the details of how one would estimate the full model from such a design if one had such data available. The specifications for

the C and N designs become a simple matter of trimming from the full model those variance components that cannot be estimated in those d

esigns.

One important issue in estimating the mixed model is the structure of the data file. In the typical ANOVA approach to data, each participant ha

s one row of data in the data file. For the mixed model estimation, each row of data consists of a single observation taken from a particular pa

rticipant in a particular condition. For instance, if a given participant were to be observed in both conditions with three replicates in each, the

n that participant would have six lines of data in the data file.

The code for estimating the mixed model specified above for these data is as follows:

In each case, the fixed e�ects are specified in the mixed model, modeling the observations as a function of condition. Implicit in the model sp

ecification are the intercept and the residual at the level of the individual observation. The code specifies the random components of varianc

e, indicating that both the intercept and the slope for condition are allowed to vary randomly across participants. In the lme4 package in R, th

e random components are included by the specification “+ (c|participant),” which indicates that the slope for c (and implicitly the intercept) v

aries across participants. The “un” option in both SAS and SPSS specifies that the random intercept and slope are allowed to covary, which is

implicit in the R code. The resulting output includes the intercept and slope fixed estimates (along with standard errors) and the variances an

d covariance of the random intercepts and slopes. Assumptions are that the random e�ects are distributed normally and that the model resid

uals are independent across observations (e.g., no carryover or lagged e�ects).

We turn now to the C and N designs with a single replicate. In these designs, as we have said, the same underlying components of variance co

ntribute to the individual observations, but not all of them are estimable.

Mixed-Model Specification of the C Design

In the C design, with each participant in both conditions, the same fixed e�ects can be estimated. However, not all of the random component

s are estimable. More specifically, can be estimated, but cannot. Although still contributes to variation in the observations, it can

not be disentangled from the residual error term . Accordingly, in the mixed model code, one simply eliminates the random variance in par

ticipant slopes from the specification, as that source of variation is contained in the error variance. Thus, in this design, one estimates only tw

o random variance components, participant intercepts and residual error.

The general e�ect size for this design is given as

The denominator of this e�ect size contains, as before, all three random sources of variation in the observations, but in this case two of these

sources are placed in brackets together to indicate the confounding: What is estimated as residual error also includes the variance due to part

icipant slopes.

The test of the condition e�ect is based on a t-statistic that divides the estimated mean di�erence between the conditions by its estimated sta

ndard error. In this design, the variance components that contribute to the standard error of the treatment di�erence include the participant

slope variance and the residual error variance. The variance attributable to participant intercepts (or means) does not contribute to the stand

   

 



DESIGNS WITH TWO RANDOM AND ONE FIXED FACTOR

ard error of the mean di�erence between conditions. Cohen (1988) defined what we call the operative e�ect size as the mean condition di�er

ence divided only by those variance components that contribute to its standard error. Accordingly, for the C design, the operative e�ect size is

In any sample of data, the operative e�ect size is estimated as the mean observed condition di�erence divided by the square root of the estim

ated residual error (which contains in it the variance attributable to random participant slopes). The general, rather than operative, e�ect size

is typically reported. We give both to clarify those variance components that do and do not contribute to the standard error of the condition d

i�erence.

Mixed-Model Specification of the N Design

In this design—the classic two-group between-subjects design—each participant is observed in only one condition. As a result, the error varia

nce contains all three random components of variance (participant intercepts, participant slopes, and residual error). Accordingly, in the mixe

d-model specification, no random components are estimable except for residual error. In the computer code to estimate and test the model,

any reference to random slopes or intercepts due to participants is omitted.

The general e�ect size for this design is

As in the general e�ect size for the C design, the brackets indicate that the variance due to participant intercepts and participant slopes is now

part of the residual error variance. This e�ect size is estimated as the mean observed condition di�erence divided by the square root of the es

timated residual error variance.

Because variances due to both participant intercepts and participant slopes contribute to the estimated residual error in this design, all three

components contribute to the standard error for testing the mean condition di�erence. Accordingly, in this design the operative e�ect size is i

dentical to the general e�ect size.

The mixed-model specifications for the C and N designs yield tests of the condition di�erence that are identical to the comparable standard A

NOVA approaches.  The di�erence lies in the structure of the data and the modeling of the sources of variation in the data. The standard ANO

VA approach treats the individual participant as the unit of analysis and does not normally make explicit all sources of variation in the data. In

contrast, the mixed-model specification treats the individual observations as the unit of analysis and allows multiple simultaneous sources of

random variation in the data. For this reason, the mixed-model approach is appropriate for the analysis of data with multiple random factors.

 

 
With only one random factor, the design alternatives are limited. With two random factors, the design possibilities grow considerably. The ran

dom factors may be crossed with each other, or one may be nested within the levels of the other; each random factor may also be crossed wit

h or nested within the levels of the fixed factor. In this section, we lay out all the design possibilities. We continue to refer to the fixed factor as

condition, having two levels. We refer to the two random factors as participants and targets. We assume the goal is to estimate and test the co

ndition di�erence so that inferences can be made to other samples of participants and targets that might have been used.

We start with the most general design, in which all factors are crossed with each other (every participant responds to every target in both con

ditions) and in which there are multiple replicates (multiple observations taken from each participant in response to each target in each condi

tion). We refer to this as the most general design because it is only in the context of this design that we can define and estimate all the rando

m components of variance contributing to the observations. Thus, only for this most general design can we give the full mixed-model specific

ation and its associated code for estimation. We then provide a general e�ect size definition as the magnitude of the condition di�erence rela

tive to all of the random sources of variation in the data.

3

4



We turn next to more widely used designs that do not include multiple replicates and in which, therefore, not all of the variance components

are estimable. These include both designs in which the two random factors are crossed with each other and designs in which one random fact

or is nested within the other. Accordingly, the designs that we consider, and their mixed-model specifications, bridge two rather disparate lite

ratures devoted to linear mixed models. Designs with crossed random factors have been considered primarily by experimental researchers in

psychology and linguistics (Baayen et al. 2008, Clark 1973, Judd et al. 2012); designs with nested random factors have a long history in edu

cational psychology and applied statistics, fields in which they are commonly referred to as multilevel or hierarchical linear models (Hox 201

0, Raudenbush & Bryk 2002, Snijders & Bosker 2011).

As was the case for the specific designs with participants as the only random factor that were considered in the previous section, these specifi

c designs di�er from the most general design in that only some of the variance components from the full set that contributes to the observati

ons can be estimated. For each design, we give those variance components that are estimable and those that are not and then present the co

de modifications that are necessary for estimation. All designs permit the testing of condition di�erences with generalization across both part

icipants and targets. For each design, we also give appropriate design-specific e�ect sizes.

Mixed-Model Specification and E�ect Size for the Most General Design

In this section, we present the full mixed-model specification for designs with the two random factors of participants and targets and the fixe

d factor of condition having two levels. As discussed in the preceding paragraphs, this full specification requires a design in which all three fac

tors are fully crossed and in which there are multiple replicates. This is the most general design in the sense that only in this design can all of t

he underlying variance components be estimated. All other designs involving these factors represent modifications of this design in which so

me of the observations are systematically missing and, accordingly, in which some of the variance components are confounded with each oth

er.

We assume a single dependent variable with variation accruing from a condition di�erence; a series of random e�ects attributable to the und

erlying factors in the design; and, additionally, random error. The full mixed model for the response of the i  participant to the j  target in th

e k  condition is

and the following are the sources of variation in :

As above, and in this model represent the fixed e�ects and capture, respectively, the overall mean response and the condition di�erence

in responses. The other elements in this model are the random e�ects, the variances and covariances of which are given intuitive interpretati

ons in Table 1 . To show more clearly the specification of some of these components as random intercept components and others as random

slope components, we rewrite the mixed model of Equation 3 as

On the basis of this model and again using Cohen's (1988) specification of the e�ect size, the following can be defined as the general e�ect si

ze for this design: 

For mixed-model estimation, the data file is again structured so that each individual observation is a row of data. The code for estimating e�e

cts for data from this fully crossed design with multiple replicates is as follows:

th th

th
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Table 1 

Definitions of random variance and covariance components in the designs considered in this review
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This code is an extension of the code given above for designs with one random factor (see Mixed Models for Designs with One Random and On

e Fixed Factor); in this case, it provides for the additional random components of variance in the design: random intercepts and slopes due to

participants, those due to targets, and finally those due to the participant-by-target interaction.

As before, not all variance components contribute to the standard error used to test the condition di�erence in this design. Accordingly, the o

perative e�ect size for this fully crossed design with replicates, calculated by dividing the condition mean di�erence by those components tha

t contribute to its standard error, is:

In the following sections, we systematically define the possible designs that involve two random factors (participants and targets) and a singl

e fixed factor (condition) but that have only a single replicate. All of the designs that we define can be seen as special cases of the most genera

l design considered above but with systematically missing observations. Each design provides an estimate of the fixed e�ects of interest. In al

l the designs, the same variance components potentially contribute to the observations, but some of these components are confounded with

each other, and thus model specification and e�ect sizes must be tailored to each particular design.

Design Possibilities

To define the full range of designs that have the three factors of condition, participants, and targets, we must consider the three possible pairs

of these factors: condition and participants, condition and targets, and participants and targets. For each pair, the two factors may be crossed

or nested. We use C and N to indicate whether the factors in each pair are crossed or nested, respectively. Each design is thus identified by thr

ee letters: the first C or N indicates whether participants are crossed with condition or are nested within condition; the second C or N indicates

whether targets are crossed with condition or nested within condition; and, finally, the third letter defines whether the two random factors, p

articipants and targets, are themselves crossed or nested. When the two random factors are nested, there are two possibilities: Either targets

are nested within participants (meaning that each participant responds to a unique set of targets), or participants are nested within targets

(meaning that each target is responded to by a unique set of participants). In the first case, the final letter in the definition of each design is NP

, meaning that participants are the higher-level factor within which targets are nested, and in the second case, in which participants are neste

d within targets, the final letter in the definition of each design is NT.

The designs are listed in Table 2 ; each design is identified by the labels defined above. We now further define and illustrate each of these desi

gns. We start with the first column of the table, in which the two random factors, participants and targets, are crossed with each other.

Designs with crossed random factors.
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Typology of designs with two random factors [participants (P) and targets (T)] and one fixed factor (condition)
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The four cells in the first column of Table 2 define four designs with the final letter C. These designs are illustrated in Figure 1 a . For ease of d

epiction, in these matrices the numbers of levels of the random factors are considerably smaller than what they would likely be in any actual

study.

 

The first design, CCC, is the fully crossed design in which every participant responds to every target twice, once in each condition. Imagine a d

esign in which participants make speeded categorization judgments of two computer-altered versions of a set of male faces, one version mor

phed towards a prototypic White face and the other morphed towards a prototypic Black face. Faces constitute the random target factor. The

condition variable refers to the two morphing conditions. Every participant categorizes every face in both its White-morphed version and its B

lack-morphed version (i.e., condition).

The CNC design is one in which every target is responded to by every participant, but each target is in only one condition. Imagine a variation

of the previous example in which participants judge target faces of di�erent races, but in this case the faces judged are actual faces of White a

nd Black individuals rather than morphed versions of faces. Thus, each individual face is either White or Black, so targets are nested within co

ndition. Participants make a speeded categorization judgment of every face, half of which are White and half Black.

In the NCC design, participants are nested within condition and targets are crossed with condition. Imagine that participants complete a serie

s of target judgments either under cognitive load or without such load. Each participant is in only one of the two load conditions. However, ev

ery target is judged under both load conditions, albeit by di�erent participants.

In the NNC design, both random factors are nested within condition. Imagine that participants make career likelihood judgments of faces (e.

g., “How likely is it that this person is a scientist?”). There are two sets of faces, either male or female, and participants respond only to one se

t or the other. Gender of target is the condition variable of interest.

Designs with nested random factors.

Figure 1 

Illustrative matrices for all designs having two random factors, participants (P, rows) and targets (T, columns), and one fixed factor, condition, with two levels (A and B) under which p

articular observations occur. An empty or blank cell indicates that the observation for a specific combination of participant and target is not collected.

Click to view

(/docserver/fulltext/psych/68/1/ps680601.f1.gif) Download as PowerPoint (/docserver/fulltext/psych/68/1/ps680601.f1.ppt?mimeT

ype=application/vnd.ms-powerpoint)
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Designs in the second and third columns of Table 2 have one of the two random factors nested within the other. In the second column, in whi

ch targets are nested within participants, each participant has a unique set of targets. In the third column, each target is responded to by its o

wn unique set of participants. These designs are illustrated by the matrices in Figure 1b .

The CCNP and CCNT designs have one random factor nested within the other, but both of these factors are crossed with condition. The classic

nested design from educational research involves students who are nested in classrooms, each taught by a single instructor. In one version of

this design, the CCNP design, the instructors evaluate their students in two di�erent conditions or subjects, math and language. Thus, the inst

ructors are the participants and they evaluate their students (targets) on both subjects. The question is whether the evaluations depend on th

e subject matter. In the CCNT design, the students are now the participants and they evaluate their instructor as both a math teacher and a la

nguage teacher. Thus, students continue to be nested within instructors, but these two groups have switched their roles in terms of the desig

n: The instructors elicit responses, and we thus designate them as the targets, whereas the students produce responses, and we thus designa

te them as the participants. Both random factors are crossed with condition.

In the case of nested random factors where one of the factors is crossed with condition and the other is nested within condition, the higher-or

der random factor, rather than the lower-order one, must be the factor that is crossed with condition. Accordingly, two of the cells in the seco

nd and third columns of Table 2 define impossible designs. In the CNNP design, targets are nested within participants, participants are crosse

d with condition, and targets are nested within condition. Imagine that male participants are each asked to nominate and judge their two clos

est male and two closest female friends. Thus, each participant has a unique set of targets (friends) who are either male or female (the conditi

on variable). The question is whether participants give systematically di�erent ratings to their nominated male friends than their female frien

ds.

In the NCNT design, participants are nested within targets, targets are crossed with condition, and participants are nested within condition. In

this case, the four friends nominated by each person are recruited as the participants, and they each rate their common (male) friend, the tar

get. Participants (those who do the rating of their common nominating friend) are now nested within gender (their own), but target (the male

nominating person who is rated) is crossed with the friendsʼ genders.

The final two designs of Table 2 are the fully nested designs, NNNP and NNNT, in which either targets are nested within participants or the oth

er way around, and both random factors are nested within condition. As an example of the NNNP design, imagine that male and female partic

ipants are recruited, and they nominate and rate as targets two friends of only their own gender. In this case, targets are nested within partici

pants and both participants and targets are either male or female (condition being gender). For the NNNT design, again imagine that people n

ominate their two friends, who are, again, the same gender as the nominating person. However, this time, the nominated friends serve as the

participants, and they each rate the person who nominated them (target). Participants are now nested within targets and both are nested wit

hin condition (gender).

In addition to these designs, there are two final designs, used with some frequency, in which participants and targets are in fact confounded,

with just a single target nested within each participant or, equivalently, a single participant nested within each target. Imagine research in whi

ch each participant thinks of a single friend and rates him or her, either in one condition only or in both. Thus participant and target are comp

letely confounded, and both can be either crossed with condition or nested within condition. The analysis of this design is formally equivalen

t to those with one random factor that we considered above. However, in this case the random factor is not participants but the participant–t

arget pair, and random variation in the data accrues from both sources, as well as their interaction.

Other designs.

Table 2 provides a coherent way of defining the possibilities with two random and one fixed, two-level factor. However, other possibilities des

erve discussion. These designs are illustrated by the matrices in Figure 1c .



First, there is a variation on the fully crossed CCC design that we call the counterbalanced design (Westfall et al. 2014). This is a fully crossed

design in the sense that all participants are crossed with all targets and every participant and target occurs in both conditions. Unlike the CCC

design, however, each participant responds to each target in just one condition. As shown in Figure 1c , participants and targets are divided i

nto two blocks that define the condition under which a specific participant–target pair is observed. In the CCC design, condition, participants,

and targets are fully crossed, whereas in the counterbalanced design, condition is confounded with the participant-by-target interaction. As a

n example, imagine that participants complete a set of math problems, some while under cognitive load and others without load. Every parti

cipant does all problems, but the division of the problems between the half that are done under load and the half that are not varies across p

articipants.

Second, there are four designs that we refer to as replication designs in that they replicate some of the designs of Table 2 with multiple sets o

f participants and targets. Above, we talked about designs with multiple replicates (meaning multiple observations from the same participan

t, target, and condition). We mean something entirely di�erent by replication designs, i.e., that an entire previously defined design is replicate

d more than once with new sets of participants and targets. Consider, for instance, the first row of Table 2 , in which both participants and tar

gets are crossed with condition. Suppose that, rather than fully crossing participants and targets, we group participants and targets such that

each group contains unique participants and unique targets. Within each group, participants and targets are fully crossed, but there are multi

ple such groups. This design essentially replicates the CCC design many times, with each group of participants and targets constituting one re

plication. We refer to this design as R(CCC). Again, a replication is defined as a specific group or subset of participants and targets. In Figure 1

c we have illustrated the R(CCC) design with the number of replications equal to two (and four participants and targets in each replication). As

a more extended example, suppose participants are put in groups of four and everyone in a particular group responds to the same four target

s twice, once in one condition and once in the second. There might be a total number of 32 participants and 32 targets across the total of eigh

t replications. The advantage of this design over the fully crossed design is that it potentially reduces participant load (i.e., participants do not

need to make as many responses) while nevertheless using a large number of targets, which can be important for statistical e�iciency reason

s considered below (see Power Considerations and Research Design).

The R(CCC) design is the replication design from the first row of Table 2 . The other three replication designs correspond to the remaining thre

e rows of Table 2 . These are illustrated in Figure 1c , again with only two replications. The R(CNC) design is the CNC design replicated multipl

e times with di�erent sets of participants and targets; each target occurs in only one condition or the other. The R(NCC) design is the NCC desi

gn replicated many times with di�erent sets of participants and targets, in this case with participants nested within condition and targets cros

sed with condition. And finally, the R(NNC) design is the NNC design with multiple replications of di�erent sets of participants and targets.

These replication designs, with participants crossed with targets in each replication, become the nested designs of the second and third colu

mns of Table 2 when the number of either participants or targets in each replication equals one. Thus, for instance, the R(CCC) design becom

es the CCNP design if each replication contains only a single participant, responding to the targets that are unique to that replication; it beco

mes the CCNT design if each replication has only a single target responded to by the unique set of participants in that replication. The other re

plication designs also become the nested designs of the third and fourth columns of Table 2 when the number of either participants or target

s in each replication equals one.

Design-Specific Estimation and E�ect Sizes

In this section, we discuss the mixed-model specification that estimates the condition di�erence given all of the random variance component

s that are estimable in each design. Recall that there are a total of six variance components (and three covariances) that, along with residual e

rror, contribute to the total variation in observations. These are defined in Table 1 . In the fully crossed design with multiple replicates (i.e., m

ultiple observations from each participant, target, and condition combination) considered earlier, all of these variance components are estim

able. Accordingly, we gave the mixed-model code in SAS, SPSS, and R; this code specifies how one estimates the fixed e�ect of condition and



the random variance components. Finally, we also gave the e�ect sizes for this design; the general e�ect size is defined as the mean condition

di�erences divided by all six variance components plus the residual variance, and the operative e�ect size is defined as the mean condition di

�erence divided by only those variance components that contribute to the standard error of the condition di�erence.

In the second column of Table 3 , we present the general e�ect sizes for all of the designs that we have defined. (The third column of this tabl

e lists the noncentrality parameters, which are necessary for the computation of statistical power and are discussed in the section below devo

ted to that subject.) Consistent with our earlier treatment of designs that have participants as the only random factor, the confounding of the

variance components in these designs is indicated by brackets in the e�ect sizes. The denominators of the general e�ect sizes include, for all

designs, all six variance components defined in Table 1 plus random error variance, but many of these are confounded and not separately est

imable. The first variance component within a set of brackets indicates the component that is estimable in the mixed-model specification, an

d the components that follow within the brackets are those that are confounded with the estimable component. The operative e�ect sizes for

all of the designs are given in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-0

33702). All the information necessary for specifying the appropriate mixed model for each design is implicit in its general e�ect size. In the Su

pplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702), we give the code (again in SA

S, SPSS, and R) for each of the designs, but the specifics of the code follow from the denominators of each design's general e�ect size in Table

3 . The rule is that one specifies as random e�ects those variance components that are not contained in brackets in the denominator of the e�

ect size or those that appear first in a set of bracketed components. (Note that the residual variance is included in the model by default and d

oes not need to be specified explicitly.)
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General e�ect sizes (d) and noncentrality parameters for the designs of Table 2 and Figure 1 a
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a
Brackets indicate the confounding of variance components. All variance components in the noncentrality parameters are defined in Table 1. The number of participants is p and the number of targets is

q. In replication designs, the number of replications is r.
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STATISTICAL POWER FOR DESIGNS WITH TWO RANDOM FACTORS

In the following paragraphs we provide illustrations for a few of the designs of how one goes from the general e�ect sizes in Table 3 to the mix

ed model code given in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-03370

2) for each design. We also briefly discuss for each design the estimable components that do not contribute to the standard error of the condi

tion di�erence, thus highlighting the di�erences between the general (in Table 3 ) and the operative e�ect sizes (which are listed in the Suppl

emental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702)).

The first design we consider is the CCC design. The only use of brackets in the denominator of its general e�ect size in Table 3 is 

, which indicates that the variance attributable to the three-way interaction is confounded with the residual error variance. Accordingly, in mo

difying the code given in the section Mixed-Model Specification and E�ect Size for the Most General Design (the most general design being the

crossed design with multiple replicates), one includes all random components except random condition slopes for the participant-by-target i

nteraction. Because participants and targets (and their interaction) are crossed with condition, the intercept variances attributable to these t

hree do not contribute to the standard error of the condition di�erence, although those components are estimable and should be included in

the model.

Second, the NCC design has two sets of brackets in the denominator of its e�ect size. Variance attributable to the participant by condition inte

raction is confounded with participant variance, and, additionally, both the participant-by-target interaction and the triple interaction are con

founded with the residual error variance. Thus, the code must be modified to estimate only random participant intercepts and random target

intercepts and slopes. All estimable components contribute to the standard error of the condition di�erence in this design except that due to t

arget intercepts.

As a third example, the NCNT design has three estimable components, those due to target variance, target by condition variance, and residual

variance. Thus, the code specifies only those random components due to target intercepts and slopes, in addition to the implicit residual erro

r term. Target intercept variance, although estimable, does not contribute to the standard error of the condition di�erence.

At the bottom of the first column of Table 3 , we indicate that the e�ect sizes for the four replication designs are identical to those of the parall

el designs in which participants and targets are crossed but the design is replicated only once (i.e., all participants get all targets). Thus, for ins

tance, the e�ect size for the R(CCC) design is identical to that given for the CCC design. The syntax for these designs is also the same as that fo

r the parallel designs with a single replication, although it probably makes sense to include replications in the model as an additional fixed fa

ctor (along with the fixed condition-by-replications interaction).

We end this section with a final warning on model specification. We have seen published analyses of designs with crossed random factors of p

articipants and targets that use a mixed model specified as if it were a nested design in which targets are nested within participants (e.g., Tom

a et al. 2012). Typically in diary studies, for instance, days of measurement are crossed with participants but are treated as nested within the

m. We suspect this happens because so-called hierarchical or multilevel models have been used in the literature for some time, whereas mod

els for crossed random factors are a more recent development. The misspecification of a crossed design as a nested one essentially amounts

to ignoring the random variation in the target factor and thus risks serious inflation of type I errors if in fact there is nonzero target variance (J

udd et al. 2012). The lesson is that model specification should follow from the design.

 

 
In this section and in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702),

we provide the tools necessary to estimate statistical power for the test of the condition di�erence for each of the designs that we have cover

ed. We discuss the general approach to power estimation and then provide a web-based application that computes power for all the designs.

In earlier work (Westfall et al. 2014), we developed a power application for those designs that involve two crossed random e�ects. The curre

nt application (located online at http://jakewestfall.org/two_factor_power/ ( http://jakewestfall.org/two_factor_power/)) extends the ra

nge of designs treated to all those defined in this review, having both crossed and nested random e�ects, as well as the replication designs.
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POWER CONSIDERATIONS AND RESEARCH DESIGN

Our approach to statistical power estimation is consistent with the general approach laid out by Cohen (1988). One begins by specifying both

a null hypothesis of no condition di�erence and an alternative hypothesis given an anticipated condition di�erence of some magnitude. Pow

er is defined as the probability of correctly rejecting the null hypothesis when the alternative hypothesis is correct. To compute power, one m

ust specify those variance components that contribute to the standard error of the condition di�erence for each design; these are given in the

denominators of the design-specific operative e�ect sizes (see the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.

1146/annurev-psych-122414-033702)). These variance components are then weighted appropriately by the sample sizes involved in the pro

spective study [total numbers of participants (p) and targets (q) in the design and number of replications (r) in the replication designs] to give

what is called the noncentrality parameter for the hypothesized true e�ect, which is presented in the third column of Table 3 for each design.

One can think of the noncentrality parameter as approximating the average t-statistic that one would obtain if the expected condition di�ere

nce were found. The denominator of the noncentrality parameter can be thought of as the expected standard error of the condition mean di�

erence. When squared and multiplied by the total number of observations, the denominator is equal to what the ANOVA literature refers to as

the expected mean square (EMS) for the condition factor (Winer 1971).

Given degrees of freedom for this noncentrality parameter, power can be computed by examining areas under the noncentral t-distribution, g

iven the multivariate normality assumption of the underlying random e�ectsʼ distributions. Because the noncentrality parameters pool or co

mbine various relevant variance components, the degrees of freedom of the noncentral t must be approximated. We use the Satterthwaite ap

proximation to estimate the relevant degrees of freedom (Satterthwaite 1946, Welch 1947). Expressions for the approximate degrees of free

dom for each design are given in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-12241

4-033702).

We provide a web-based application ( http://jakewestfall.org/two_factor_power/ (http://jakewestfall.org/two_factor_power/)) that com

putes power for these designs. The user must identify the specific design used, the numbers of participants and targets,  the hypothesized m

ean di�erence or e�ect size, and the relevant variance components. In the application, the user has a choice between two di�erent ways of th

inking about the variance components and the e�ect size. Under the first option, the user inputs the mean di�erence expected and estimated

values for all of the estimable variance components. An o�en-simpler option is to input what might be thought of as standardized versions of

these, including the anticipated e�ect size (in terms of d) and the relative magnitude of the estimable variance components for each design (t

he proportion of the total variance in the observations attributable to a particular component of variance). We refer to these relative estimate

s of the variance components as Variance Partitioning Coe�icients (Goldstein et al. 2002), and designate them as V (e.g., for participant int

ercept variance, for target slope variance). By definition, the sum of all the Vs (including residual error) must equal 1.0.

 

 
All designs permit an estimate of the condition di�erence. Therefore, in making a decision about which design to use, the most important con

siderations are feasibility and statistical power. We discuss the feasibility issues in the section Design Choices: Power and Feasibility Consider

ations. In this section, we consider those factors influencing the power to detect the anticipated condition di�erence.

In general, the smaller the variance components that contribute to the noncentrality parameter (or operational e�ect size) and the larger the

relevant sample sizes, the greater the power. In designs with participants as the only random factor, power is determined by the participant v

ariance components and the participant sample size. In the designs that we are now considering, power is determined by the variance compo

nents and sample sizes of both participants and targets, although the extent to which these matter varies from design to design. The importa

nt point, however, is that we must think in terms of multiple relevant variance components and multiple sample sizes.

To increase power in designs with participants as the only random factor, researchers can either decrease the error variability in the data or in

crease the number of participants. Both strategies involve costs. The costs associated with increasing the number of participants are obvious.

Those associated with decreasing participant variability are less obvious. Selecting participants who are relatively homogeneous on relevant

variables related to the outcome should decrease the relevant variance components. Doing so, however, restricts one's ability to generalize o

bserved results to other samples that are not so restricted.
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The same considerations hold in thinking about designs with multiple random factors, in which variance components due to targets and their

sample size, in addition to those due to participants, figure prominently in determining power. Power o�en dramatically increases as the num

ber of targets in a design increases. Additionally, if we restrict the variance attributable to targets through pretesting, removing extraneous fac

tors, and other strategies, then power should increase. For instance, it is common in research on face perception to edit target faces to elimina

te facial hair and other idiosyncrasies. However, restricting target variance imposes a cost in that one is unable to generalize to samples of tar

gets that are not so restricted. The important point is that the same power considerations apply to the sampling of targets as to the sampling

of participants. Larger and more homogeneous samples of both increase power, but these strategies come with costs.

Increasing the Sample Sizes

In designs with just one random factor, as the participant sample size increases, power eventually approaches one. However, in many of the d

esigns considered in this review, if the sample size of one of the two random factors is fixed, then increasing the sample size of the other rand

om factor increases power, but generally to a limit of less than one. This is a surprising result; in our experience, many researchers naturally a

ssume that increasing the number of participants in a design will eventually ensure adequate power. When the number of targets in a design i

s small, power will increase as the participant sample size increases but may asymptote at levels that are quite a bit lower than one. In many

designs that involve both participants and targets, the number of targets used is typically substantially smaller than the number of participan

ts [e.g., a meta-analysis by Bond & DePaulo (2008) in one research domain reports on average 80 participants per study but only 12 targets],

as researchers may mistakenly think that power is determined only (or primarily) by the sample size of participants.

To illustrate, in Figure 2 we plot the power to detect a medium e�ect size of d = 0.5 in the CNC design as a function of number of participants

under di�erent assumptions about the sample of targets. Varied in the figure are number of targets, 8 or 32, and how much variance is due to

targets and their interaction with condition, 10% or 30% of the total variance. When the number of targets is small or when the targets are hig

hly variable, the maximum attainable power in the study can be far less than one.

 

Figure 2 

Plot of statistical power as a function of the total number of participants for the CNC (P and T crossed, P crossed with C, and T nested in C) design. The number of targets has been set

to either 8 or 32. The other variance components are set to the following values: , , , , and . Note that these othe

r variance components a�ect only the rate at which the power functions converge to their asymptotes; they do not a�ect the maximum attainable power values, which depend only

on the e�ect size, number of targets, and the target variance components. Abbreviations: C, fixed condition factor; E, error; P, random participant factor; T, random target factor.
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A similar phenomenon occurs in nested designs (targets within participants or participants within targets), but only for the lower-level factor.

For example, if targets are nested within participants so that each participant responds to a unique set of targets, then the maximum attainab

le power is less than one if the participant sample size is held constant and the target sample size is increased, but power does approach one i

f the participant sample is increased. The reason for this asymmetry is that increasing the sample size of the higher-level factor necessarily en

tails increasing the sample size of the lower-level factor, but the reverse is not true.

Assuming that one is able to vary either the participant sample size or the target sample size (or both), which is expected to have a greater e�

ect on statistical power? The answer depends on several factors, including the initial sample sizes, the relative sizes of the participant and tar

get variance components, and the design of the experiment. The definitive answer is contained implicitly in the noncentrality parameters we

have given. In the following paragraphs, we o�er a few rules of thumb.

First, assuming crossed random factors, the larger the variance components associated with one random factor (relative to the other random

factor), the more beneficial it is to increase the sample size of that factor. Thus, if participant mean and slope variances are larger than those

due to targets, then increasing the sample size of participants reaps greater benefits than increasing that of targets.

Second, if the sample sizes of targets and participants are substantially di�erent, then there will generally be a greater power benefit to increa

sing the size of whichever sample is smaller, assuming that both participants and targets have approximately equal associated variance comp

onents. For instance, if one sample size is 300 units and the other is 10, then adding an additional 10 units to the larger sample size (for a new

total of 310) is unlikely to have as big an e�ect on statistical power as adding an additional 10 units to the smaller sample size (for a new total

of 20).

Third, all else being equal, it is better to increase the sample size of a random factor that is nested within condition than one that is crossed wi

th condition. The reason for this is that when a random factor is nested within condition, the standard error of the condition di�erence depen

ds on both the intercept and slope variance components of that factor, whereas when the random factor is crossed with condition, only the ra

ndom slope variance is relevant.

Fourth, in a design in which one random factor is nested within the other (e.g., targets within participants), it is usually more e�ective to incre

ase the sample size of the higher-level factor (e.g., participants) than that of the factor nested within it (e.g., targets). As discussed above, the

maximum attainable power level when increasing the lower-level sample size in a nested design is, in general, less than 1.0. According to this

rule, even in smaller studies that do not approach the theoretical maximum power level, power increases more quickly by increasing the high

er-level sample size than by increasing the lower-level sample size.

Design Choices: Power and Feasibility Considerations

Power is not the only consideration guiding the choice of design; feasibility issues also figure prominently. We discuss some of those issues in

this section.

Although power will o�en increase dramatically as the target sample size increases, sometimes it is not feasible for participants to respond to

a large number of targets. In this case, the best strategy may be to use a design with nested, rather than crossed, random factors. Researchers

o�en assume that a crossed design is more powerful, but in fact it can be shown that for any crossed design, a nested version of the same des

ign—that is, one with the same number of responses per participant and the same relationships between the random factors and condition, b

ut in which every participant receives di�erent targets—is always more powerful. This di�erence derives simply from the fact that as we move

to the nested design there is a dramatic increase in the number of targets even as the number of responses per participant remains constant.

However, nested designs may in some contexts require unreasonable numbers of targets (the number of participants times the number of res

ponses per participant). Consider the CCC design and the CCNP design. If each of 30 participants gives 15 responses, then the CCC design invo

lves responses to only 15 targets, whereas the CCNP design involves responses to 450 targets, resulting in a potentially dramatic increase in p

ower if random variance due to targets is present. However, it may simply not be feasible to find so many targets. A reasonable alternative is t

o consider the R(CCC) design, containing, for instance, three replications of the CCC design, with 10 participants and 15 targets in each, for a t
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otal of 45 targets. Each participant still responds only 15 times, but the total number of targets has gone up threefold over the number in the

CCC design. Generally speaking, in cases in which each response imposes a considerable burden on participants, it makes sense to increase p

ower by increasing the number of targets across di�erent replications of a design, rather than to limit the number of targets by the use of a de

sign in which all participants respond to the same set of targets (Westfall et al. 2014).

If one has a choice between crossing a random factor with condition and nesting that random factor within condition, then one should alway

s choose to cross the random factor with condition to maximize statistical power. This is because intercept variance due to a random factor co

ntributes to the noncentrality parameter (making it smaller) when that factor is nested within condition, but not when it is crossed with condi

tion. It follows that, if only one random factor is to be crossed with condition, then it is generally better to cross whichever factor has the large

r anticipated variance components. Of course, there are feasibility issues that arise in considering whether a random factor can be crossed wit

h condition. Crossing participants with condition raises issues of order and carryover e�ects, as well as the potential suspicion that participan

ts may develop about the study's purpose. These issues do not arise if the crossed factor is targets.

Finally, if one is using a design with nested random factors and one has the choice of which is the higher-order and which the lower-order fact

or, then it is always better to choose as the higher-order factor the one with less variance. So, for instance, if participants have larger associate

d variance components than targets, then a design that nests participants within targets is preferable to one that nests targets within particip

ants. This is true so long as it is feasible to have a reasonable sample size of the higher-level factor.

 

 
Our designs have assumed only two random factors and one fixed factor having only two levels. We have also assumed that when one factor i

s nested within another, the nesting is randomly determined. What happens when we go beyond these assumptions? We first discuss the issu

e of nonrandom nesting and then turn to design extensions.

Nonrandom Nesting

When a random factor is nested within condition, di�erences attributable to that random factor are confounded with condition di�erences. W

ith random assignment of levels of the random factor to condition, that confounding can be estimated and dealt with, which is not possible w

ith nonrandom assignment. This is as true of targets as it is of participants. Hence, nonrandom assignment of either participants or targets to

condition generally results in bias in estimating condition e�ects.

When one of the two random factors is nested within the other, either targets within participants or participants within targets, we have assu

med random assignment of the nested factor to the levels of the higher-order factor. What happens when this is not the case? For simplicity,

we rely on the situation in which targets are nested within participants, but the following considerations apply under the reverse nesting as w

ell. With nonrandom nesting of targets within participants, target di�erences are confounded with participant di�erences, resulting in covaria

nces between participant and target intercepts and (perhaps) condition slopes. In many situations, it is likely that such covariances are positi

ve (participants with higher means respond to targets that, on average, have associated higher means). This positive covariance augments th

e variance components of participants, which generally results in less e�icient tests of condition di�erences. Thus, a power consequence of n

onrandom assignment of targets to participants is likely. However, nonrandom assignment of targets to participants does not result in bias in

the estimate of the condition di�erence, so long as participants are crossed with condition or, when they are nested within condition, they ha

ve been randomly assigned to condition. In other words, in a fully nested design, nonrandom assignment of the lower-order random factor to

levels of the higher-order one (resulting in a nonzero covariance between the random participant and target e�ects) does not bias the conditi

on di�erence estimate so long as the higher-order random factor is still randomly assigned to condition levels.

In the replication designs, participants and targets are nested within each replication. We have assumed random assignment of both factors t

o each replication. If this is not the case, for instance when unique sets of participants and targets come to the experiment intact and constitu

te the replications, then the replications o�en should be treated as an additional random factor in the design specification rather than as a fix
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ed factor, as we suggested when we discussed the model specification for these replication designs. In consequence, one must have su�icient

numbers of replications, because the sample size of this factor now becomes relevant in determining power.

Design Extensions

As discussed in the previous section, replications in the replication designs should be considered a random factor in the case of nonrandom n

esting within replications. Other contexts also require more than two random factors. For instance, priming studies present participants with

primes and ask them to respond to subsequently presented targets. In most cases, one should treat both primes and targets, in addition to pa

rticipants, as random factors. Using principles extracted from what we have covered in this review, we can extend the designs and models to c

over these scenarios. Additional random factors lead to additional complexities in specifying the random components of the underlying mod

el, as the number of variance components can increase exponentially if the random factors are all crossed with each other (as in the priming e

xample). Condition slope variance components must be specified in the model for those random factors that are crossed with condition (and

their interactions). Accordingly, though the complete model specification is possible, it may be necessary to specify a large number of varianc

e components, leading to possible convergence problems in estimating the parameters of the linear mixed model. The recent literature has re

commended specifying the complete underlying model (including all random variances and covariances that are estimable; see Barr et al. 20

13), a recommendation with which we generally concur. At the same time, if convergence cannot be achieved in estimating the model, respec

ification may help by dropping some of the variance components that represent higher-order interactions that might reasonably be expected

to be nonexistent (see also Bates et al. 2015).

Our designs also have only one fixed factor, condition, with only two levels. In many experiments there are more fixed factors, generally cross

ed and o�en with more than two levels. So long as those fixed factors (and their interactions) are contrast-coded and the e�ects of those cont

rasts tested as single-degree-of-freedom tests, additional fixed factors present no further problems other than, again, the complexity of the m

odel to be specified. Intercept and slope variance components must be specified for any random factors that are crossed with those addition

al fixed factors (and with the interactions of fixed factors).

There may also be continuous covariates that one would like to include in the fixed part of the model. We strongly recommend centering such

covariates (Judd et al. 2008). Doing this is necessary to preserve the meaning of the random variance components and fixed parameter estim

ates (including the condition di�erence).

Finally, we have assumed completely balanced research designs with no missing data. Mixed-model estimation can generally be accomplishe

d with missing data. However, to have unbiased estimates, it must be assumed that such missing data are randomly lost, a highly dubious ass

umption. More detail on missing data is contained in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/ann

urev-psych-122414-033702).

 

 
There is extensive literature on what are called dyadic designs (Kenny et al. 2006), in which participants interact with other participants. Dya

dic designs are also designs with two random factors. In fact, all of our designs can be viewed as dyadic. This seems most natural when the tar

gets are people; nonetheless, even when the targets are inanimate, each observation involves a dyad or a pair.

One advantage of viewing studies with participants and targets as dyadic designs is that there is an established tradition of quantifying the ra

ndom sources of variances in the observations from such designs. As we have discussed, having some idea of the relative amount of variance

of the di�erent components can be very helpful in planning a study. Designs using the social relations model (SRM) are understood in great d

etail; the rest of this section describes these designs.

The SRM examines observations taken from actors about partners (Kenny et al. 2006). In the parlance of this review, an actor is a participant

and a partner is a target. In the SRM, the variance in the observations is partitioned into actor, partner, and relationship, i.e., actor×partner int

eraction. In most applications that use the SRM, there is no fixed variable such as condition, so variances due to condition slopes are not pres

ent. The traditional focus in an SRM analysis is on the partitioning of variance into actor, partner, and relationship. For instance, Hönekopp (2

http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702
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006) had participants in three studies judge the physical attractiveness of targetsʼ faces using photographs. In the second study, which had 31

actors and 60 targets, he found that 15% of the variance was due to the participant or actor, 26% due to the target or partner, 33% due to the r

elationship or participant×target interaction, and the remaining 26% due to error. Quite clearly in this study, the two key systematic sources o

f variance were relationships and partners, and knowledge of these variances would prove useful in planning studies on interpersonal attracti

on.

Although all the designs in this review can be viewed as dyadic designs, only one of the designs is a SRM design: the CCC design, which is calle

d the half-block design in SRM parlance. In this design, there are actors (i.e., participants), each of whom is paired with the same set of partne

rs (i.e., targets). The prototypical SRM design, however, involves a case in which the actors and partners are the same group of people, and ea

ch person is paired with every other person. Such a design is called a round robin design and is not considered in this review (see, however, th

e extensive discussion in Kenny et al. 2006).

Many dyadic designs, like the round robin design, are reciprocal in the sense that observations accrue from both participant A responding to t

arget B and from participant B responding to target A. In other words, each person serves as both a participant and a target. The CCC design w

ould be a reciprocal design in the following situation: Consider a study in which a sample of men interact with a sample of women; in each int

eraction, each person states how much he or she likes his or her interaction partner. If we were interested in the e�ect of gender, then we coul

d view the study as a fully crossed design in which, for the male judge condition, men are the participants and women are the targets, and for

the female judge condition, the same women are now the participants and the same men are the targets. This SRM design is referred to as the

asymmetric block design.

Other designs that we have considered can be made into reciprocal designs by combining them. For instance, in the example we used for the

CCNP design, the instructors evaluate their students in two di�erent conditions or subjects, math and language; in the CCNT design, the stude

nts evaluate their instructor in math and language. If we obtained data from both students and teachers in the same study, we would have a r

eciprocal design. Using the parlance developed by Kenny et al. (2006), such a design is a reciprocal one-with-many study. Other designs can

also be combined to form reciprocal designs, as is discussed in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/1

0.1146/annurev-psych-122414-033702).

 

 
In psychology experiments, we frequently ask participants to respond to targets (e.g., faces, words, other people) in various experimental con

ditions. In such experiments, the interest is in reaching conclusions about condition di�erences that generalize to other samples of participan

ts and, typically, other samples of targets that might have been used. To permit this, it is essential that the analysis of the resulting data treat

both participants and targets as random factors. The failure to do so, collapsing across targets or ignoring the variation they induce, leads to s

erious bias and, we suggest, failures to replicate experimental e�ects when other samples of targets are used.

In this review, we provide an exhaustive typology of designs based on the nesting or crossing of three factors (participants, targets, and condi

tion) in such experiments. For each of these designs, we discuss the mixed-model specification that permits unbiased estimates of condition

e�ects while treating both participants and targets as random factors. Additionally, we provide tools to estimate the e�ect size and statistical

power of the condition di�erence in each design.

We conclude by emphasizing the importance of considering targets as well as participants in determining statistical power. We also discuss co

nsiderations that ought to drive the choice among alternative designs. Our hope is that researchers will adopt appropriate designs and analyt

ic models that incorporate target variation and thus permit conclusions that are more likely to replicate with other samples of both participan

ts and targets.
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