
ABSTRACT
 

 
Traditional methods of analyzing data from psychological experiments are based on the assumption that there is a

single random factor (normally participants) to which generalization is sought. However, many studies involve at le

ast two random factors (e.g., participants and the targets to which they respond, such as words, pictures, or individ

uals). The application of traditional analytic methods to the data from such studies can result in serious bias in test

ing experimental e�ects. In this review, we develop a comprehensive typology of designs involving two random fac

tors, which may be either crossed or nested, and one fixed factor, condition. We present appropriate linear mixed

models for all designs and develop e�ect size measures. We provide the tools for power estimation for all designs.

We then discuss issues of design choice, highlighting power and feasibility considerations. Our goal is to encourage

appropriate analytic methods that produce replicable results for studies involving new samples of both participant

s and targets.
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INTRODUCTION
 
Psychologists learn early in their statistical training to use analysis of variance procedures (t-tests and ANOVA) to an

alyze data from designs in which participants respond in various experimental conditions. In these designs and ana

lyses, condition is a fixed factor, whereas participants are a random factor, meaning that the participants used in an

y particular study are thought to be a sample of participants that might have been used. In analyzing the data from

such experiments, one obtains an estimate of the mean condition di�erence, as well as an estimate of the uncertai

nty surrounding that di�erence, by examining the variability across participants (i.e., across the random factor in th

e design). The goal is to determine whether the mean condition di�erence, given the variability of participants, is s

u�iciently large to permit the belief that it would continue to be found with other samples of participants.

However, many questions in psychology do not lend themselves easily to these well-learned analytic approaches.

Frequently, research questions demand experiments that involve more than a single random factor across which g

eneralization about condition di�erences should be sought. For instance, a memory researcher might be interested

in memory for word lists under di�erent conditions and wish to reach conclusions that generalize both to other sa

mples of participants and to other samples of words that might have been used. Likewise, a social psychologist mi

ght ask participants to respond to faces of individuals coming from two di�erent ethnic or racial categories. Here th

e goal would be to reach conclusions that generalize both to other participants and to other samples of faces that

might have been used. Additionally, consider a clinical psychologist who is interested in showing that a new therap

eutic approach for the treatment of depression is more e�ective than the standard approach. He or she might colle

ct data from patients who are being treated by therapists under either the new or the standard approach. Again, ge

neralization of any di�erences should reasonably be sought both across other patients and across other therapists

that might have been studied.

Because psychological researchers are not routinely trained in the analysis of data from designs, such as those just

illustrated, that have multiple random factors, all too o�en the data from such designs are inappropriately analyze

d by collapsing across or ignoring one of the random factors so that the familiar t-tests and ANOVA procedures can

be used. For instance, the memory researcher would typically compute a mean score for each participant for the w

ord list as a whole; the social psychologist would compute, for each participant, means across faces within a racial

category; and the depression researcher might simply ignore the therapists in the analysis. If the goal is to reach co

nclusions that generalize to both random factors, then these analyses are likely inappropriate because they have b

een shown to result in seriously inflated type I statistical errors, leading researchers to claim statistically significant

e�ects that may be unlikely to replicate with di�erent samples of words, faces, or therapists (Clark 1973, Judd et a

l. 2012). Many failures to replicate experimental results likely stem from this (Westfall et al. 2015).

To remedy these errors, in this review we provide a thorough treatment of the design and analysis of experiments i

n psychology that have more than one random factor. In such experiments, rather than having a single source of er

ror variation in the data that arises from a single random factor (e.g., participants), there exist multiple sources of e



MIXED MODELS FOR DESIGNS WITH ONE RANDOM AND ONE FIXED FACTOR

rror variation arising from multiple random factors (e.g., words as well as participants, faces as well as participants,

therapists as well as patients). Given this fact, a more general analytic approach is necessary, in which those multip

le sources of random variation are explicitly modeled and estimated. This more general analytic approach relies on

what are called generalized linear mixed models (Bolker et al. 2009, Stroup 2012). We provide a thorough treatme

nt of this approach in the context of psychological experimental designs having two random factors.

We begin with the familiar designs involving only one random factor, participants, and a single fixed condition fact

or having two levels. These are the experimental designs for which the well-learned t-tests and ANOVA procedures

are appropriate. We show how these procedures can be recast into the mixed-model framework so that the familia

r analyses become special cases of mixed-model analyses.

We then turn to designs having two random factors (which we call participants and targets) and one fixed factor (w

hich we call condition), and present the full mixed model that identifies all the sources of variation in the resulting

data. We develop a comprehensive typology of all such designs, including designs in which the two random factors

are crossed and designs in which one random factor is nested within the other. For each design, we give specifics a

bout estimation and discuss an e�ect size estimate that is modeled on Cohen's d (i.e., the standardized mean di�er

ence; Cohen 1988) but generalized to the current designs involving two random factors.

Next we develop procedures for the estimation of statistical power in the context of the designs considered, includi

ng providing access to a web-based application for power estimation. In light of this, we discuss considerations rel

ating to sample sizes, design choices, and the e�iciency of alternative designs.

In the concluding sections of the review, we expand the design possibilities, discussing designs with more than two

levels of condition, with multiple fixed factors, with more than two random factors, and with dyadic data.

 

 
We begin with familiar designs in which there is one fixed factor, condition, having two levels, and only one random

factor, participants. For instance, imagine that we are interested in task performance under stress. We are compari

ng the responses of participants under two conditions, with and without stress. In this context, there are two possi

ble designs: participants are in both conditions or participants are in only one condition. The former is typically call

ed a within-participant design, whereas the latter is called a between-participant design (Smith 2014). We refer to

the first design as the C design, meaning that participants are crossed with condition, and the second as the N desi

gn, meaning that participants are nested within the levels of condition. The standard least-squares analysis for dat

a from the C design is the paired t-test or, equivalently, a repeated-measures ANOVA. For data from the N design, th

e standard analysis is the independent samples t-test or a between-subject ANOVA.

To recast the analysis of data from these designs into the mixed-model terminology, we first specify the possible so

urces of variation in the observations from these designs. We assume participants are measured on a single depen

dent variable, , where i refers to the individual participant and k to the condition under which the observation is t 



aken. The mixed-model specification of the individual observations can be written as follows:

The values of represent condition and are assumed to be contrast- or deviation-coded  (i.e., and ).

The terms and represent the fixed e�ects and capture the overall mean response ( ) and the condition di�er

ence in responses ( ). In the mixed-model terminology, is the fixed intercept and is the fixed slope of conditi

on. What makes this a mixed model is that, in addition to these fixed sources of variation in the data, there are mult

iple sources of variation that are random in the sense that they vary across the participants in the design. The follo

wing are the random components of variation in the observations:

The variance attributable to participant mean di�erences is designated as . In the language of mixed models, thi

s is the random variation across participants in their intercepts. The variance attributable to participant di�erences

in the condition e�ects (i.e., participant-by-condition interaction e�ects) is . In the language of mixed models,

this is the random variation across participants in their condition slopes. And finally, represents residual random

error variation in the observations. These variances are also in the standard ANOVA approach to these designs; the

mixed-model specification makes them explicit. Additionally, in the mixed-model specification, a possible covarian

ce is explicitly considered between participant intercepts and their slopes,

allowing those participants with higher mean responses to have smaller or larger condition di�erences. This covari

ance is typically ignored in the standard ANOVA approach.

The mixed model given in Equation 1 can be rewritten to make clear that the and terms represent random

variation in the intercepts and slopes across participants:

Cast this way, we have a linear model with a single predictor variable, , specifying varying intercepts and slopes o

ver and above their fixed (or average) components.

As already specified, the condition e�ect in the above model is captured by , which equals . Cohen (19

88) defined the general standardized e�ect size d as the raw mean di�erence divided by the square root of the pool

ed variance of the observations within the conditions: 
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This full model, with all the random components of variation, is estimable only when each participant is crossed wi

th condition (as in the C design) and when there are multiple replicates (i.e., multiple independent observations fro

m each participant in each condition). In the C design with only one replicate (i.e., one observation from each parti

cipant in each condition) and in the N design, one can still estimate the fixed e�ects, but there is a confounding of t

he three random variance components. Although we do not consider in detail designs with multiple replicates (alth

ough see the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122

414-033702)), we want to provide the details of how one would estimate the full model from such a design if one h

ad such data available. The specifications for the C and N designs become a simple matter of trimming from the full

model those variance components that cannot be estimated in those designs.

One important issue in estimating the mixed model is the structure of the data file. In the typical ANOVA approach t

o data, each participant has one row of data in the data file. For the mixed model estimation, each row of data cons

ists of a single observation taken from a particular participant in a particular condition. For instance, if a given parti

cipant were to be observed in both conditions with three replicates in each, then that participant would have six lin

es of data in the data file.

The code for estimating the mixed model specified above for these data is as follows:

In each case, the fixed e�ects are specified in the mixed model, modeling the observations as a function of conditio

n. Implicit in the model specification are the intercept and the residual at the level of the individual observation. Th

e code specifies the random components of variance, indicating that both the intercept and the slope for condition

are allowed to vary randomly across participants. In the lme4 package in R, the random components are included

by the specification “+ (c|participant),” which indicates that the slope for c (and implicitly the intercept) varies acro

ss participants. The “un” option in both SAS and SPSS specifies that the random intercept and slope are allowed to

covary, which is implicit in the R code. The resulting output includes the intercept and slope fixed estimates (along

with standard errors) and the variances and covariance of the random intercepts and slopes. Assumptions are that

the random e�ects are distributed normally and that the model residuals are independent across observations (e.

g., no carryover or lagged e�ects).

We turn now to the C and N designs with a single replicate. In these designs, as we have said, the same underlying c

omponents of variance contribute to the individual observations, but not all of them are estimable.

Mixed-Model Specification of the C Design

http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702


In the C design, with each participant in both conditions, the same fixed e�ects can be estimated. However, not all

of the random components are estimable. More specifically, can be estimated, but cannot. Although s

till contributes to variation in the observations, it cannot be disentangled from the residual error term . Accordin

gly, in the mixed model code, one simply eliminates the random variance in participant slopes from the specificatio

n, as that source of variation is contained in the error variance. Thus, in this design, one estimates only two random

variance components, participant intercepts and residual error.

The general e�ect size for this design is given as

The denominator of this e�ect size contains, as before, all three random sources of variation in the observations, b

ut in this case two of these sources are placed in brackets together to indicate the confounding: What is estimated a

s residual error also includes the variance due to participant slopes.

The test of the condition e�ect is based on a t-statistic that divides the estimated mean di�erence between the con

ditions by its estimated standard error. In this design, the variance components that contribute to the standard err

or of the treatment di�erence include the participant slope variance and the residual error variance. The variance a

ttributable to participant intercepts (or means) does not contribute to the standard error of the mean di�erence be

tween conditions. Cohen (1988) defined what we call the operative e�ect size as the mean condition di�erence div

ided only by those variance components that contribute to its standard error. Accordingly, for the C design, the ope

rative e�ect size is 

In any sample of data, the operative e�ect size is estimated as the mean observed condition di�erence divided by t

he square root of the estimated residual error (which contains in it the variance attributable to random participant

slopes). The general, rather than operative, e�ect size is typically reported. We give both to clarify those variance c

omponents that do and do not contribute to the standard error of the condition di�erence.

Mixed-Model Specification of the N Design

In this design—the classic two-group between-subjects design—each participant is observed in only one condition.

As a result, the error variance contains all three random components of variance (participant intercepts, participan

t slopes, and residual error). Accordingly, in the mixed-model specification, no random components are estimable

except for residual error. In the computer code to estimate and test the model, any reference to random slopes or i

ntercepts due to participants is omitted.

The general e�ect size for this design is
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DESIGNS WITH TWO RANDOM AND ONE FIXED FACTOR

As in the general e�ect size for the C design, the brackets indicate that the variance due to participant intercepts an

d participant slopes is now part of the residual error variance. This e�ect size is estimated as the mean observed co

ndition di�erence divided by the square root of the estimated residual error variance.

Because variances due to both participant intercepts and participant slopes contribute to the estimated residual er

ror in this design, all three components contribute to the standard error for testing the mean condition di�erence.

Accordingly, in this design the operative e�ect size is identical to the general e�ect size.

The mixed-model specifications for the C and N designs yield tests of the condition di�erence that are identical to t

he comparable standard ANOVA approaches.  The di�erence lies in the structure of the data and the modeling of t

he sources of variation in the data. The standard ANOVA approach treats the individual participant as the unit of an

alysis and does not normally make explicit all sources of variation in the data. In contrast, the mixed-model specific

ation treats the individual observations as the unit of analysis and allows multiple simultaneous sources of random

variation in the data. For this reason, the mixed-model approach is appropriate for the analysis of data with multipl

e random factors.

 

 
With only one random factor, the design alternatives are limited. With two random factors, the design possibilities

grow considerably. The random factors may be crossed with each other, or one may be nested within the levels of t

he other; each random factor may also be crossed with or nested within the levels of the fixed factor. In this sectio

n, we lay out all the design possibilities. We continue to refer to the fixed factor as condition, having two levels. We

refer to the two random factors as participants and targets. We assume the goal is to estimate and test the conditio

n di�erence so that inferences can be made to other samples of participants and targets that might have been use

d.

We start with the most general design, in which all factors are crossed with each other (every participant responds t

o every target in both conditions) and in which there are multiple replicates (multiple observations taken from eac

h participant in response to each target in each condition). We refer to this as the most general design because it is

only in the context of this design that we can define and estimate all the random components of variance contribut

ing to the observations. Thus, only for this most general design can we give the full mixed-model specification and i

ts associated code for estimation. We then provide a general e�ect size definition as the magnitude of the conditio

n di�erence relative to all of the random sources of variation in the data.

We turn next to more widely used designs that do not include multiple replicates and in which, therefore, not all of

the variance components are estimable. These include both designs in which the two random factors are crossed w

ith each other and designs in which one random factor is nested within the other. Accordingly, the designs that we

4



consider, and their mixed-model specifications, bridge two rather disparate literatures devoted to linear mixed mo

dels. Designs with crossed random factors have been considered primarily by experimental researchers in psychol

ogy and linguistics (Baayen et al. 2008, Clark 1973, Judd et al. 2012); designs with nested random factors have a l

ong history in educational psychology and applied statistics, fields in which they are commonly referred to as multi

level or hierarchical linear models (Hox 2010, Raudenbush & Bryk 2002, Snijders & Bosker 2011).

As was the case for the specific designs with participants as the only random factor that were considered in the pre

vious section, these specific designs di�er from the most general design in that only some of the variance compone

nts from the full set that contributes to the observations can be estimated. For each design, we give those variance

components that are estimable and those that are not and then present the code modifications that are necessary

for estimation. All designs permit the testing of condition di�erences with generalization across both participants a

nd targets. For each design, we also give appropriate design-specific e�ect sizes.

Mixed-Model Specification and E�ect Size for the Most General Design

In this section, we present the full mixed-model specification for designs with the two random factors of participan

ts and targets and the fixed factor of condition having two levels. As discussed in the preceding paragraphs, this full

specification requires a design in which all three factors are fully crossed and in which there are multiple replicates.

This is the most general design in the sense that only in this design can all of the underlying variance components

be estimated. All other designs involving these factors represent modifications of this design in which some of the

observations are systematically missing and, accordingly, in which some of the variance components are confound

ed with each other.

We assume a single dependent variable with variation accruing from a condition di�erence; a series of random e�e

cts attributable to the underlying factors in the design; and, additionally, random error. The full mixed model for th

e response of the i  participant to the j  target in the k  condition is

and the following are the sources of variation in :

As above, and in this model represent the fixed e�ects and capture, respectively, the overall mean response a

nd the condition di�erence in responses. The other elements in this model are the random e�ects, the variances an

d covariances of which are given intuitive interpretations in Table 1 . To show more clearly the specification of som

e of these components as random intercept components and others as random slope components, we rewrite the

mixed model of Equation 3 as

th th th
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On the basis of this model and again using Cohen's (1988) specification of the e�ect size, the following can be defi

ned as the general e�ect size for this design: 

For mixed-model estimation, the data file is again structured so that each individual observation is a row of data. T

he code for estimating e�ects for data from this fully crossed design with multiple replicates is as follows:
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Open Table 1  fullscreen  (/content/table/10.1146/annurev-psych-122414-033702.t1?fmt=ahah&fullscre

en=true&lang=en)

Table 1 

Definitions of random variance and covariance components in the designs considered in this review
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Variables: C, fixed condition factor; E, error; P, random participant factor; T, random target factor.



This code is an extension of the code given above for designs with one random factor (see Mixed Models for Designs

with One Random and One Fixed Factor); in this case, it provides for the additional random components of varianc

e in the design: random intercepts and slopes due to participants, those due to targets, and finally those due to the

participant-by-target interaction.

As before, not all variance components contribute to the standard error used to test the condition di�erence in this

design. Accordingly, the operative e�ect size for this fully crossed design with replicates, calculated by dividing the

condition mean di�erence by those components that contribute to its standard error, is:

In the following sections, we systematically define the possible designs that involve two random factors (participan

ts and targets) and a single fixed factor (condition) but that have only a single replicate. All of the designs that we d

efine can be seen as special cases of the most general design considered above but with systematically missing obs

ervations. Each design provides an estimate of the fixed e�ects of interest. In all the designs, the same variance co

mponents potentially contribute to the observations, but some of these components are confounded with each ot

her, and thus model specification and e�ect sizes must be tailored to each particular design.

Design Possibilities

To define the full range of designs that have the three factors of condition, participants, and targets, we must consi

der the three possible pairs of these factors: condition and participants, condition and targets, and participants an

d targets. For each pair, the two factors may be crossed or nested. We use C and N to indicate whether the factors in

each pair are crossed or nested, respectively. Each design is thus identified by three letters: the first C or N indicates

whether participants are crossed with condition or are nested within condition; the second C or N indicates whethe

r targets are crossed with condition or nested within condition; and, finally, the third letter defines whether the two

random factors, participants and targets, are themselves crossed or nested. When the two random factors are nest

ed, there are two possibilities: Either targets are nested within participants (meaning that each participant respond

s to a unique set of targets), or participants are nested within targets (meaning that each target is responded to by

a unique set of participants). In the first case, the final letter in the definition of each design is NP, meaning that par

ticipants are the higher-level factor within which targets are nested, and in the second case, in which participants a

re nested within targets, the final letter in the definition of each design is NT.

6 



The designs are listed in Table 2 ; each design is identified by the labels defined above. We now further define and i

llustrate each of these designs. We start with the first column of the table, in which the two random factors, particip

ants and targets, are crossed with each other.

Designs with crossed random factors.

The four cells in the first column of Table 2 define four designs with the final letter C. These designs are illustrated i

n Figure 1 a . For ease of depiction, in these matrices the numbers of levels of the random factors are considerably

smaller than what they would likely be in any actual study.

Open Table 2  fullscreen  (/content/table/10.1146/annurev-psych-122414-033702.t2?fmt=ahah&fullscre

en=true&lang=en)

Table 2 

Typology of designs with two random factors [participants (P) and targets (T)] and one fixed factor (condition)

Toggle display: Table 2    

Figure 1 

Illustrative matrices for all designs having two random factors, participants (P, rows) and targets (T, columns), and one fixed factor, condition, with t

wo levels (A and B) under which particular observations occur. An empty or blank cell indicates that the observation for a specific combination of p

articipant and target is not collected.

Click to view
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The first design, CCC, is the fully crossed design in which every participant responds to every target twice, once in e

ach condition. Imagine a design in which participants make speeded categorization judgments of two computer-alt

ered versions of a set of male faces, one version morphed towards a prototypic White face and the other morphed t

owards a prototypic Black face. Faces constitute the random target factor. The condition variable refers to the two

morphing conditions. Every participant categorizes every face in both its White-morphed version and its Black-mor

phed version (i.e., condition).

The CNC design is one in which every target is responded to by every participant, but each target is in only one con

dition. Imagine a variation of the previous example in which participants judge target faces of di�erent races, but in

this case the faces judged are actual faces of White and Black individuals rather than morphed versions of faces. Th

us, each individual face is either White or Black, so targets are nested within condition. Participants make a speede

d categorization judgment of every face, half of which are White and half Black.

In the NCC design, participants are nested within condition and targets are crossed with condition. Imagine that pa

rticipants complete a series of target judgments either under cognitive load or without such load. Each participant

is in only one of the two load conditions. However, every target is judged under both load conditions, albeit by di�e

rent participants.

In the NNC design, both random factors are nested within condition. Imagine that participants make career likeliho

od judgments of faces (e.g., “How likely is it that this person is a scientist?”). There are two sets of faces, either male

or female, and participants respond only to one set or the other. Gender of target is the condition variable of intere

st.

Designs with nested random factors.

Designs in the second and third columns of Table 2 have one of the two random factors nested within the other. In

the second column, in which targets are nested within participants, each participant has a unique set of targets. In t

he third column, each target is responded to by its own unique set of participants. These designs are illustrated by t

he matrices in Figure 1b .

The CCNP and CCNT designs have one random factor nested within the other, but both of these factors are crossed

with condition. The classic nested design from educational research involves students who are nested in classroom

s, each taught by a single instructor. In one version of this design, the CCNP design, the instructors evaluate their st

udents in two di�erent conditions or subjects, math and language. Thus, the instructors are the participants and th

ey evaluate their students (targets) on both subjects. The question is whether the evaluations depend on the subje

ct matter. In the CCNT design, the students are now the participants and they evaluate their instructor as both a ma

th teacher and a language teacher. Thus, students continue to be nested within instructors, but these two groups h

(/docserver/fulltext/psych/68/1/ps680601.f1.gif) Download as PowerPoint (/docserver/fulltext/psych/68/

1/ps680601.f1.ppt?mimeType=application/vnd.ms-powerpoint)
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ave switched their roles in terms of the design: The instructors elicit responses, and we thus designate them as the

targets, whereas the students produce responses, and we thus designate them as the participants. Both random fa

ctors are crossed with condition.

In the case of nested random factors where one of the factors is crossed with condition and the other is nested with

in condition, the higher-order random factor, rather than the lower-order one, must be the factor that is crossed wit

h condition. Accordingly, two of the cells in the second and third columns of Table 2 define impossible designs. In t

he CNNP design, targets are nested within participants, participants are crossed with condition, and targets are nes

ted within condition. Imagine that male participants are each asked to nominate and judge their two closest male

and two closest female friends. Thus, each participant has a unique set of targets (friends) who are either male or f

emale (the condition variable). The question is whether participants give systematically di�erent ratings to their no

minated male friends than their female friends.

In the NCNT design, participants are nested within targets, targets are crossed with condition, and participants are

nested within condition. In this case, the four friends nominated by each person are recruited as the participants, a

nd they each rate their common (male) friend, the target. Participants (those who do the rating of their common no

minating friend) are now nested within gender (their own), but target (the male nominating person who is rated) is

crossed with the friendsʼ genders.

The final two designs of Table 2 are the fully nested designs, NNNP and NNNT, in which either targets are nested wi

thin participants or the other way around, and both random factors are nested within condition. As an example of t

he NNNP design, imagine that male and female participants are recruited, and they nominate and rate as targets tw

o friends of only their own gender. In this case, targets are nested within participants and both participants and tar

gets are either male or female (condition being gender). For the NNNT design, again imagine that people nominate

their two friends, who are, again, the same gender as the nominating person. However, this time, the nominated fri

ends serve as the participants, and they each rate the person who nominated them (target). Participants are now n

ested within targets and both are nested within condition (gender).

In addition to these designs, there are two final designs, used with some frequency, in which participants and targe

ts are in fact confounded, with just a single target nested within each participant or, equivalently, a single participa

nt nested within each target. Imagine research in which each participant thinks of a single friend and rates him or h

er, either in one condition only or in both. Thus participant and target are completely confounded, and both can be

either crossed with condition or nested within condition. The analysis of this design is formally equivalent to those

with one random factor that we considered above. However, in this case the random factor is not participants but t

he participant–target pair, and random variation in the data accrues from both sources, as well as their interaction.

Other designs.



Table 2 provides a coherent way of defining the possibilities with two random and one fixed, two-level factor. How

ever, other possibilities deserve discussion. These designs are illustrated by the matrices in Figure 1c .

First, there is a variation on the fully crossed CCC design that we call the counterbalanced design (Westfall et al. 20

14). This is a fully crossed design in the sense that all participants are crossed with all targets and every participant

and target occurs in both conditions. Unlike the CCC design, however, each participant responds to each target in j

ust one condition. As shown in Figure 1c , participants and targets are divided into two blocks that define the cond

ition under which a specific participant–target pair is observed. In the CCC design, condition, participants, and targ

ets are fully crossed, whereas in the counterbalanced design, condition is confounded with the participant-by-targ

et interaction. As an example, imagine that participants complete a set of math problems, some while under cognit

ive load and others without load. Every participant does all problems, but the division of the problems between th

e half that are done under load and the half that are not varies across participants.

Second, there are four designs that we refer to as replication designs in that they replicate some of the designs of T

able 2 with multiple sets of participants and targets. Above, we talked about designs with multiple replicates (mea

ning multiple observations from the same participant, target, and condition). We mean something entirely di�eren

t by replication designs, i.e., that an entire previously defined design is replicated more than once with new sets of

participants and targets. Consider, for instance, the first row of Table 2 , in which both participants and targets are

crossed with condition. Suppose that, rather than fully crossing participants and targets, we group participants an

d targets such that each group contains unique participants and unique targets. Within each group, participants an

d targets are fully crossed, but there are multiple such groups. This design essentially replicates the CCC design ma

ny times, with each group of participants and targets constituting one replication. We refer to this design as R(CCC).

Again, a replication is defined as a specific group or subset of participants and targets. In Figure 1c we have illustra

ted the R(CCC) design with the number of replications equal to two (and four participants and targets in each replic

ation). As a more extended example, suppose participants are put in groups of four and everyone in a particular gr

oup responds to the same four targets twice, once in one condition and once in the second. There might be a total

number of 32 participants and 32 targets across the total of eight replications. The advantage of this design over th

e fully crossed design is that it potentially reduces participant load (i.e., participants do not need to make as many r

esponses) while nevertheless using a large number of targets, which can be important for statistical e�iciency reas

ons considered below (see Power Considerations and Research Design).

The R(CCC) design is the replication design from the first row of Table 2 . The other three replication designs corres

pond to the remaining three rows of Table 2 . These are illustrated in Figure 1c , again with only two replications. T

he R(CNC) design is the CNC design replicated multiple times with di�erent sets of participants and targets; each ta

rget occurs in only one condition or the other. The R(NCC) design is the NCC design replicated many times with di�



erent sets of participants and targets, in this case with participants nested within condition and targets crossed wit

h condition. And finally, the R(NNC) design is the NNC design with multiple replications of di�erent sets of participa

nts and targets.

These replication designs, with participants crossed with targets in each replication, become the nested designs of

the second and third columns of Table 2 when the number of either participants or targets in each replication equa

ls one. Thus, for instance, the R(CCC) design becomes the CCNP design if each replication contains only a single par

ticipant, responding to the targets that are unique to that replication; it becomes the CCNT design if each replicatio

n has only a single target responded to by the unique set of participants in that replication. The other replication de

signs also become the nested designs of the third and fourth columns of Table 2 when the number of either partici

pants or targets in each replication equals one.

Design-Specific Estimation and E�ect Sizes

In this section, we discuss the mixed-model specification that estimates the condition di�erence given all of the ra

ndom variance components that are estimable in each design. Recall that there are a total of six variance compone

nts (and three covariances) that, along with residual error, contribute to the total variation in observations. These a

re defined in Table 1 . In the fully crossed design with multiple replicates (i.e., multiple observations from each part

icipant, target, and condition combination) considered earlier, all of these variance components are estimable. Acc

ordingly, we gave the mixed-model code in SAS, SPSS, and R; this code specifies how one estimates the fixed e�ect

of condition and the random variance components. Finally, we also gave the e�ect sizes for this design; the general

e�ect size is defined as the mean condition di�erences divided by all six variance components plus the residual var

iance, and the operative e�ect size is defined as the mean condition di�erence divided by only those variance com

ponents that contribute to the standard error of the condition di�erence.

In the second column of Table 3 , we present the general e�ect sizes for all of the designs that we have defined. (Th

e third column of this table lists the noncentrality parameters, which are necessary for the computation of statistic

al power and are discussed in the section below devoted to that subject.) Consistent with our earlier treatment of d

esigns that have participants as the only random factor, the confounding of the variance components in these desi

gns is indicated by brackets in the e�ect sizes. The denominators of the general e�ect sizes include, for all designs,

all six variance components defined in Table 1 plus random error variance, but many of these are confounded and

not separately estimable. The first variance component within a set of brackets indicates the component that is esti

mable in the mixed-model specification, and the components that follow within the brackets are those that are con

founded with the estimable component. The operative e�ect sizes for all of the designs are given in the Suppleme

ntal Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702). All the inf

ormation necessary for specifying the appropriate mixed model for each design is implicit in its general e�ect size. I

n the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-03

3702), we give the code (again in SAS, SPSS, and R) for each of the designs, but the specifics of the code follow fro
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m the denominators of each design's general e�ect size in Table 3 . The rule is that one specifies as random e�ects

those variance components that are not contained in brackets in the denominator of the e�ect size or those that ap

pear first in a set of bracketed components. (Note that the residual variance is included in the model by default and

does not need to be specified explicitly.)
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a
Brackets indicate the confounding of variance components. All variance components in the noncentrality parameters are defined in Table 1. The number of partici

pants is p and the number of targets is q. In replication designs, the number of replications is r.

In the following paragraphs we provide illustrations for a few of the designs of how one goes from the general e�ec

t sizes in Table 3 to the mixed model code given in the Supplemental Appendix (http://www.annualreviews.or

g/doi/suppl/10.1146/annurev-psych-122414-033702) for each design. We also briefly discuss for each design the

estimable components that do not contribute to the standard error of the condition di�erence, thus highlighting th

e di�erences between the general (in Table 3 ) and the operative e�ect sizes (which are listed in the Supplemental

Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702)).

The first design we consider is the CCC design. The only use of brackets in the denominator of its general e�ect size

in Table 3 is , which indicates that the variance attributable to the three-way interaction is confounde

d with the residual error variance. Accordingly, in modifying the code given in the section Mixed-Model Specificatio

n and E�ect Size for the Most General Design (the most general design being the crossed design with multiple repli

cates), one includes all random components except random condition slopes for the participant-by-target interacti

on. Because participants and targets (and their interaction) are crossed with condition, the intercept variances attri

butable to these three do not contribute to the standard error of the condition di�erence, although those compone

nts are estimable and should be included in the model.

Second, the NCC design has two sets of brackets in the denominator of its e�ect size. Variance attributable to the p

articipant by condition interaction is confounded with participant variance, and, additionally, both the participant-

by-target interaction and the triple interaction are confounded with the residual error variance. Thus, the code mus

t be modified to estimate only random participant intercepts and random target intercepts and slopes. All estimabl

e components contribute to the standard error of the condition di�erence in this design except that due to target in

tercepts.

As a third example, the NCNT design has three estimable components, those due to target variance, target by condi

tion variance, and residual variance. Thus, the code specifies only those random components due to target interce

pts and slopes, in addition to the implicit residual error term. Target intercept variance, although estimable, does n

ot contribute to the standard error of the condition di�erence.
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STATISTICAL POWER FOR DESIGNS WITH TWO RANDOM FACTORS

At the bottom of the first column of Table 3 , we indicate that the e�ect sizes for the four replication designs are ide

ntical to those of the parallel designs in which participants and targets are crossed but the design is replicated only

once (i.e., all participants get all targets). Thus, for instance, the e�ect size for the R(CCC) design is identical to that

given for the CCC design. The syntax for these designs is also the same as that for the parallel designs with a single r

eplication, although it probably makes sense to include replications in the model as an additional fixed factor (alon

g with the fixed condition-by-replications interaction).

We end this section with a final warning on model specification. We have seen published analyses of designs with c

rossed random factors of participants and targets that use a mixed model specified as if it were a nested design in

which targets are nested within participants (e.g., Toma et al. 2012). Typically in diary studies, for instance, days of

measurement are crossed with participants but are treated as nested within them. We suspect this happens becau

se so-called hierarchical or multilevel models have been used in the literature for some time, whereas models for cr

ossed random factors are a more recent development. The misspecification of a crossed design as a nested one ess

entially amounts to ignoring the random variation in the target factor and thus risks serious inflation of type I error

s if in fact there is nonzero target variance (Judd et al. 2012). The lesson is that model specification should follow f

rom the design.

 

 
In this section and in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev

-psych-122414-033702), we provide the tools necessary to estimate statistical power for the test of the condition

di�erence for each of the designs that we have covered. We discuss the general approach to power estimation and

then provide a web-based application that computes power for all the designs. In earlier work (Westfall et al. 2014

), we developed a power application for those designs that involve two crossed random e�ects. The current applic

ation (located online at http://jakewestfall.org/two_factor_power/ ( http://jakewestfall.org/two_factor_powe

r/)) extends the range of designs treated to all those defined in this review, having both crossed and nested random

e�ects, as well as the replication designs.

Our approach to statistical power estimation is consistent with the general approach laid out by Cohen (1988). On

e begins by specifying both a null hypothesis of no condition di�erence and an alternative hypothesis given an anti

cipated condition di�erence of some magnitude. Power is defined as the probability of correctly rejecting the null h

ypothesis when the alternative hypothesis is correct. To compute power, one must specify those variance compone

nts that contribute to the standard error of the condition di�erence for each design; these are given in the denomin

ators of the design-specific operative e�ect sizes (see the Supplemental Appendix (http://www.annualreviews.o

rg/doi/suppl/10.1146/annurev-psych-122414-033702)). These variance components are then weighted appropri

ately by the sample sizes involved in the prospective study [total numbers of participants (p) and targets (q) in the

design and number of replications (r) in the replication designs] to give what is called the noncentrality parameter f

or the hypothesized true e�ect, which is presented in the third column of Table 3 for each design. One can think of

http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702
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POWER CONSIDERATIONS AND RESEARCH DESIGN

the noncentrality parameter as approximating the average t-statistic that one would obtain if the expected conditio

n di�erence were found. The denominator of the noncentrality parameter can be thought of as the expected stand

ard error of the condition mean di�erence. When squared and multiplied by the total number of observations, the

denominator is equal to what the ANOVA literature refers to as the expected mean square (EMS) for the condition fa

ctor (Winer 1971).

Given degrees of freedom for this noncentrality parameter, power can be computed by examining areas under the

noncentral t-distribution, given the multivariate normality assumption of the underlying random e�ectsʼ distributi

ons. Because the noncentrality parameters pool or combine various relevant variance components, the degrees of

freedom of the noncentral t must be approximated. We use the Satterthwaite approximation to estimate the releva

nt degrees of freedom (Satterthwaite 1946, Welch 1947). Expressions for the approximate degrees of freedom for

each design are given in the Supplemental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annu

rev-psych-122414-033702).

We provide a web-based application ( http://jakewestfall.org/two_factor_power/ (http://jakewestfall.org/two

_factor_power/)) that computes power for these designs. The user must identify the specific design used, the num

bers of participants and targets,  the hypothesized mean di�erence or e�ect size, and the relevant variance compo

nents. In the application, the user has a choice between two di�erent ways of thinking about the variance compon

ents and the e�ect size. Under the first option, the user inputs the mean di�erence expected and estimated values f

or all of the estimable variance components. An o�en-simpler option is to input what might be thought of as stand

ardized versions of these, including the anticipated e�ect size (in terms of d) and the relative magnitude of the esti

mable variance components for each design (the proportion of the total variance in the observations attributable t

o a particular component of variance). We refer to these relative estimates of the variance components as Variance

Partitioning Coe�icients (Goldstein et al. 2002), and designate them as V (e.g., for participant intercept varianc

e, for target slope variance). By definition, the sum of all the Vs (including residual error) must equal 1.0.

 

 
All designs permit an estimate of the condition di�erence. Therefore, in making a decision about which design to u

se, the most important considerations are feasibility and statistical power. We discuss the feasibility issues in the se

ction Design Choices: Power and Feasibility Considerations. In this section, we consider those factors influencing th

e power to detect the anticipated condition di�erence.

In general, the smaller the variance components that contribute to the noncentrality parameter (or operational e�e

ct size) and the larger the relevant sample sizes, the greater the power. In designs with participants as the only rand

om factor, power is determined by the participant variance components and the participant sample size. In the des
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igns that we are now considering, power is determined by the variance components and sample sizes of both parti

cipants and targets, although the extent to which these matter varies from design to design. The important point, h

owever, is that we must think in terms of multiple relevant variance components and multiple sample sizes.

To increase power in designs with participants as the only random factor, researchers can either decrease the error

variability in the data or increase the number of participants. Both strategies involve costs. The costs associated wit

h increasing the number of participants are obvious. Those associated with decreasing participant variability are le

ss obvious. Selecting participants who are relatively homogeneous on relevant variables related to the outcome sh

ould decrease the relevant variance components. Doing so, however, restricts one's ability to generalize observed r

esults to other samples that are not so restricted.

The same considerations hold in thinking about designs with multiple random factors, in which variance compone

nts due to targets and their sample size, in addition to those due to participants, figure prominently in determining

power. Power o�en dramatically increases as the number of targets in a design increases. Additionally, if we restrict

the variance attributable to targets through pretesting, removing extraneous factors, and other strategies, then po

wer should increase. For instance, it is common in research on face perception to edit target faces to eliminate facia

l hair and other idiosyncrasies. However, restricting target variance imposes a cost in that one is unable to generaliz

e to samples of targets that are not so restricted. The important point is that the same power considerations apply

to the sampling of targets as to the sampling of participants. Larger and more homogeneous samples of both incre

ase power, but these strategies come with costs.

Increasing the Sample Sizes

In designs with just one random factor, as the participant sample size increases, power eventually approaches one.

However, in many of the designs considered in this review, if the sample size of one of the two random factors is fix

ed, then increasing the sample size of the other random factor increases power, but generally to a limit of less than

one. This is a surprising result; in our experience, many researchers naturally assume that increasing the number of

participants in a design will eventually ensure adequate power. When the number of targets in a design is small, po

wer will increase as the participant sample size increases but may asymptote at levels that are quite a bit lower tha

n one. In many designs that involve both participants and targets, the number of targets used is typically substanti

ally smaller than the number of participants [e.g., a meta-analysis by Bond & DePaulo (2008) in one research dom

ain reports on average 80 participants per study but only 12 targets], as researchers may mistakenly think that pow

er is determined only (or primarily) by the sample size of participants.

To illustrate, in Figure 2 we plot the power to detect a medium e�ect size of d = 0.5 in the CNC design as a function

of number of participants under di�erent assumptions about the sample of targets. Varied in the figure are number

of targets, 8 or 32, and how much variance is due to targets and their interaction with condition, 10% or 30% of the

total variance. When the number of targets is small or when the targets are highly variable, the maximum attainabl

e power in the study can be far less than one.



 

A similar phenomenon occurs in nested designs (targets within participants or participants within targets), but only

for the lower-level factor. For example, if targets are nested within participants so that each participant responds to

a unique set of targets, then the maximum attainable power is less than one if the participant sample size is held co

nstant and the target sample size is increased, but power does approach one if the participant sample is increased.

The reason for this asymmetry is that increasing the sample size of the higher-level factor necessarily entails increa

sing the sample size of the lower-level factor, but the reverse is not true.

Assuming that one is able to vary either the participant sample size or the target sample size (or both), which is exp

ected to have a greater e�ect on statistical power? The answer depends on several factors, including the initial sam

ple sizes, the relative sizes of the participant and target variance components, and the design of the experiment. Th

e definitive answer is contained implicitly in the noncentrality parameters we have given. In the following paragrap

hs, we o�er a few rules of thumb.

First, assuming crossed random factors, the larger the variance components associated with one random factor (rel

ative to the other random factor), the more beneficial it is to increase the sample size of that factor. Thus, if particip

ant mean and slope variances are larger than those due to targets, then increasing the sample size of participants r

Figure 2 

Plot of statistical power as a function of the total number of participants for the CNC (P and T crossed, P crossed with C, and T nested in C) design.

The number of targets has been set to either 8 or 32. The other variance components are set to the following values: , ,

, , and . Note that these other variance components a�ect only the rate at which the power functions c

onverge to their asymptotes; they do not a�ect the maximum attainable power values, which depend only on the e�ect size, number of targets, an

d the target variance components. Abbreviations: C, fixed condition factor; E, error; P, random participant factor; T, random target factor.
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eaps greater benefits than increasing that of targets.

Second, if the sample sizes of targets and participants are substantially di�erent, then there will generally be a grea

ter power benefit to increasing the size of whichever sample is smaller, assuming that both participants and targets

have approximately equal associated variance components. For instance, if one sample size is 300 units and the ot

her is 10, then adding an additional 10 units to the larger sample size (for a new total of 310) is unlikely to have as b

ig an e�ect on statistical power as adding an additional 10 units to the smaller sample size (for a new total of 20).

Third, all else being equal, it is better to increase the sample size of a random factor that is nested within condition

than one that is crossed with condition. The reason for this is that when a random factor is nested within condition,

the standard error of the condition di�erence depends on both the intercept and slope variance components of tha

t factor, whereas when the random factor is crossed with condition, only the random slope variance is relevant.

Fourth, in a design in which one random factor is nested within the other (e.g., targets within participants), it is usu

ally more e�ective to increase the sample size of the higher-level factor (e.g., participants) than that of the factor n

ested within it (e.g., targets). As discussed above, the maximum attainable power level when increasing the lower-l

evel sample size in a nested design is, in general, less than 1.0. According to this rule, even in smaller studies that d

o not approach the theoretical maximum power level, power increases more quickly by increasing the higher-level

sample size than by increasing the lower-level sample size.

Design Choices: Power and Feasibility Considerations

Power is not the only consideration guiding the choice of design; feasibility issues also figure prominently. We disc

uss some of those issues in this section.

Although power will o�en increase dramatically as the target sample size increases, sometimes it is not feasible for

participants to respond to a large number of targets. In this case, the best strategy may be to use a design with nest

ed, rather than crossed, random factors. Researchers o�en assume that a crossed design is more powerful, but in f

act it can be shown that for any crossed design, a nested version of the same design—that is, one with the same nu

mber of responses per participant and the same relationships between the random factors and condition, but in w

hich every participant receives di�erent targets—is always more powerful. This di�erence derives simply from the f

act that as we move to the nested design there is a dramatic increase in the number of targets even as the number

of responses per participant remains constant.

However, nested designs may in some contexts require unreasonable numbers of targets (the number of participan

ts times the number of responses per participant). Consider the CCC design and the CCNP design. If each of 30 parti

cipants gives 15 responses, then the CCC design involves responses to only 15 targets, whereas the CCNP design inv

olves responses to 450 targets, resulting in a potentially dramatic increase in power if random variance due to targe

ts is present. However, it may simply not be feasible to find so many targets. A reasonable alternative is to consider

the R(CCC) design, containing, for instance, three replications of the CCC design, with 10 participants and 15 targets



COMPLICATIONS AND EXTENSIONS

in each, for a total of 45 targets. Each participant still responds only 15 times, but the total number of targets has go

ne up threefold over the number in the CCC design. Generally speaking, in cases in which each response imposes a

considerable burden on participants, it makes sense to increase power by increasing the number of targets across

di�erent replications of a design, rather than to limit the number of targets by the use of a design in which all partic

ipants respond to the same set of targets (Westfall et al. 2014).

If one has a choice between crossing a random factor with condition and nesting that random factor within conditi

on, then one should always choose to cross the random factor with condition to maximize statistical power. This is

because intercept variance due to a random factor contributes to the noncentrality parameter (making it smaller)

when that factor is nested within condition, but not when it is crossed with condition. It follows that, if only one ran

dom factor is to be crossed with condition, then it is generally better to cross whichever factor has the larger antici

pated variance components. Of course, there are feasibility issues that arise in considering whether a random facto

r can be crossed with condition. Crossing participants with condition raises issues of order and carryover e�ects, as

well as the potential suspicion that participants may develop about the study's purpose. These issues do not arise i

f the crossed factor is targets.

Finally, if one is using a design with nested random factors and one has the choice of which is the higher-order and

which the lower-order factor, then it is always better to choose as the higher-order factor the one with less varianc

e. So, for instance, if participants have larger associated variance components than targets, then a design that nest

s participants within targets is preferable to one that nests targets within participants. This is true so long as it is fea

sible to have a reasonable sample size of the higher-level factor.

 

 
Our designs have assumed only two random factors and one fixed factor having only two levels. We have also assu

med that when one factor is nested within another, the nesting is randomly determined. What happens when we g

o beyond these assumptions? We first discuss the issue of nonrandom nesting and then turn to design extensions.

Nonrandom Nesting

When a random factor is nested within condition, di�erences attributable to that random factor are confounded wi

th condition di�erences. With random assignment of levels of the random factor to condition, that confounding ca

n be estimated and dealt with, which is not possible with nonrandom assignment. This is as true of targets as it is o

f participants. Hence, nonrandom assignment of either participants or targets to condition generally results in bias

in estimating condition e�ects.

When one of the two random factors is nested within the other, either targets within participants or participants wit

hin targets, we have assumed random assignment of the nested factor to the levels of the higher-order factor. What

happens when this is not the case? For simplicity, we rely on the situation in which targets are nested within partici

pants, but the following considerations apply under the reverse nesting as well. With nonrandom nesting of targets



within participants, target di�erences are confounded with participant di�erences, resulting in covariances betwee

n participant and target intercepts and (perhaps) condition slopes. In many situations, it is likely that such covarian

ces are positive (participants with higher means respond to targets that, on average, have associated higher mean

s). This positive covariance augments the variance components of participants, which generally results in less e�ici

ent tests of condition di�erences. Thus, a power consequence of nonrandom assignment of targets to participants i

s likely. However, nonrandom assignment of targets to participants does not result in bias in the estimate of the co

ndition di�erence, so long as participants are crossed with condition or, when they are nested within condition, the

y have been randomly assigned to condition. In other words, in a fully nested design, nonrandom assignment of th

e lower-order random factor to levels of the higher-order one (resulting in a nonzero covariance between the rando

m participant and target e�ects) does not bias the condition di�erence estimate so long as the higher-order rando

m factor is still randomly assigned to condition levels.

In the replication designs, participants and targets are nested within each replication. We have assumed random as

signment of both factors to each replication. If this is not the case, for instance when unique sets of participants an

d targets come to the experiment intact and constitute the replications, then the replications o�en should be treat

ed as an additional random factor in the design specification rather than as a fixed factor, as we suggested when w

e discussed the model specification for these replication designs. In consequence, one must have su�icient numbe

rs of replications, because the sample size of this factor now becomes relevant in determining power.

Design Extensions

As discussed in the previous section, replications in the replication designs should be considered a random factor i

n the case of nonrandom nesting within replications. Other contexts also require more than two random factors. Fo

r instance, priming studies present participants with primes and ask them to respond to subsequently presented ta

rgets. In most cases, one should treat both primes and targets, in addition to participants, as random factors. Using

principles extracted from what we have covered in this review, we can extend the designs and models to cover thes

e scenarios. Additional random factors lead to additional complexities in specifying the random components of the

underlying model, as the number of variance components can increase exponentially if the random factors are all c

rossed with each other (as in the priming example). Condition slope variance components must be specified in the

model for those random factors that are crossed with condition (and their interactions). Accordingly, though the co

mplete model specification is possible, it may be necessary to specify a large number of variance components, lead

ing to possible convergence problems in estimating the parameters of the linear mixed model. The recent literature

has recommended specifying the complete underlying model (including all random variances and covariances that

are estimable; see Barr et al. 2013), a recommendation with which we generally concur. At the same time, if conve

rgence cannot be achieved in estimating the model, respecification may help by dropping some of the variance co

mponents that represent higher-order interactions that might reasonably be expected to be nonexistent (see also 

Bates et al. 2015).



FROM OUR DESIGNS TO DYADIC DESIGNS

Our designs also have only one fixed factor, condition, with only two levels. In many experiments there are more fix

ed factors, generally crossed and o�en with more than two levels. So long as those fixed factors (and their interacti

ons) are contrast-coded and the e�ects of those contrasts tested as single-degree-of-freedom tests, additional fixe

d factors present no further problems other than, again, the complexity of the model to be specified. Intercept and

slope variance components must be specified for any random factors that are crossed with those additional fixed f

actors (and with the interactions of fixed factors).

There may also be continuous covariates that one would like to include in the fixed part of the model. We strongly r

ecommend centering such covariates (Judd et al. 2008). Doing this is necessary to preserve the meaning of the ran

dom variance components and fixed parameter estimates (including the condition di�erence).

Finally, we have assumed completely balanced research designs with no missing data. Mixed-model estimation can

generally be accomplished with missing data. However, to have unbiased estimates, it must be assumed that such

missing data are randomly lost, a highly dubious assumption. More detail on missing data is contained in the Suppl

emental Appendix (http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702).

 

 
There is extensive literature on what are called dyadic designs (Kenny et al. 2006), in which participants interact wi

th other participants. Dyadic designs are also designs with two random factors. In fact, all of our designs can be vie

wed as dyadic. This seems most natural when the targets are people; nonetheless, even when the targets are inani

mate, each observation involves a dyad or a pair.

One advantage of viewing studies with participants and targets as dyadic designs is that there is an established tra

dition of quantifying the random sources of variances in the observations from such designs. As we have discusse

d, having some idea of the relative amount of variance of the di�erent components can be very helpful in planning

a study. Designs using the social relations model (SRM) are understood in great detail; the rest of this section descri

bes these designs.

The SRM examines observations taken from actors about partners (Kenny et al. 2006). In the parlance of this revie

w, an actor is a participant and a partner is a target. In the SRM, the variance in the observations is partitioned into

actor, partner, and relationship, i.e., actor×partner interaction. In most applications that use the SRM, there is no fix

ed variable such as condition, so variances due to condition slopes are not present. The traditional focus in an SRM

analysis is on the partitioning of variance into actor, partner, and relationship. For instance, Hönekopp (2006) had

participants in three studies judge the physical attractiveness of targetsʼ faces using photographs. In the second stu

dy, which had 31 actors and 60 targets, he found that 15% of the variance was due to the participant or actor, 26%

due to the target or partner, 33% due to the relationship or participant×target interaction, and the remaining 26% d

ue to error. Quite clearly in this study, the two key systematic sources of variance were relationships and partners, a

nd knowledge of these variances would prove useful in planning studies on interpersonal attraction.

http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702


CONCLUSION

Although all the designs in this review can be viewed as dyadic designs, only one of the designs is a SRM design: th

e CCC design, which is called the half-block design in SRM parlance. In this design, there are actors (i.e., participant

s), each of whom is paired with the same set of partners (i.e., targets). The prototypical SRM design, however, involv

es a case in which the actors and partners are the same group of people, and each person is paired with every othe

r person. Such a design is called a round robin design and is not considered in this review (see, however, the extens

ive discussion in Kenny et al. 2006).

Many dyadic designs, like the round robin design, are reciprocal in the sense that observations accrue from both pa

rticipant A responding to target B and from participant B responding to target A. In other words, each person serve

s as both a participant and a target. The CCC design would be a reciprocal design in the following situation: Consid

er a study in which a sample of men interact with a sample of women; in each interaction, each person states how

much he or she likes his or her interaction partner. If we were interested in the e�ect of gender, then we could view

the study as a fully crossed design in which, for the male judge condition, men are the participants and women are

the targets, and for the female judge condition, the same women are now the participants and the same men are t

he targets. This SRM design is referred to as the asymmetric block design.

Other designs that we have considered can be made into reciprocal designs by combining them. For instance, in th

e example we used for the CCNP design, the instructors evaluate their students in two di�erent conditions or subje

cts, math and language; in the CCNT design, the students evaluate their instructor in math and language. If we obta

ined data from both students and teachers in the same study, we would have a reciprocal design. Using the parlanc

e developed by Kenny et al. (2006), such a design is a reciprocal one-with-many study. Other designs can also be c

ombined to form reciprocal designs, as is discussed in the Supplemental Appendix (http://www.annualreviews.

org/doi/suppl/10.1146/annurev-psych-122414-033702).

 

 
In psychology experiments, we frequently ask participants to respond to targets (e.g., faces, words, other people) i

n various experimental conditions. In such experiments, the interest is in reaching conclusions about condition di�

erences that generalize to other samples of participants and, typically, other samples of targets that might have be

en used. To permit this, it is essential that the analysis of the resulting data treat both participants and targets as ra

ndom factors. The failure to do so, collapsing across targets or ignoring the variation they induce, leads to serious b

ias and, we suggest, failures to replicate experimental e�ects when other samples of targets are used.

In this review, we provide an exhaustive typology of designs based on the nesting or crossing of three factors (parti

cipants, targets, and condition) in such experiments. For each of these designs, we discuss the mixed-model specifi

cation that permits unbiased estimates of condition e�ects while treating both participants and targets as random

factors. Additionally, we provide tools to estimate the e�ect size and statistical power of the condition di�erence in

each design.

http://www.annualreviews.org/doi/suppl/10.1146/annurev-psych-122414-033702
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