Journals (/about/journals)		Topics (/topics)		Information (/authors)	Author Services
				es (/about/initiatives)	About (/about)
				tps://www.cookie	t.com/en/what-
				ehind-powered-	cookiebot/).
				Sign In / Sign U	

This website uşes canikittss://susy.mdpi.com/user/manuscripts/upload?journal=entropy) We use cookies to personalise content and ads, to provide social media features and to seanaly for quftitiesfic. We also share information about your use of our site with our social 4 media, advertising and analytics partners who may combine it with other information that you'veyprovided to them or that they've collected from your use of their services.

```
Author / Affiliation / Email
```

Fntrony

All Article Types
Necessary

Search

Alfrafeedrsessch

(ljournal/entropy.)

Submit to this Journal
Show details > (https://susy.mdpi.com/user/manuscripts/upload?

Allow all

Review tor this Journal
(https://susy.mdpi.com/volunteer/journals/revilewh selection

Deny

Powered by Cookiebot by Usercentrics (https://www.cookiebot.com/en/what-is-behind-

Article Menu

Article Views	6190
Citations	32
Table of Contents	
Abstract	
Introduction	
Applications in Economics and	
Finance	
Conclusions and Perspectives	
Necessary	
Conflicts of Interest	
Refrefermersces	

\$́atistics

${ }^{1}$ Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, Urca, Rio de Janeiro 22290-180, Brazil /journal/entropy/special_issues/economics_finance))

00457/article_deploy/html/images/entropy-19-00457-g001.png?1506418673) (https://pub.mdpi-res.com/entropy/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g002.png? 1506418673) (https://pub.mdpi-res.com/entropy/entrop (httgs://www.cookiebot.com/en/what-is-behind-powered-by-cookiebot/). 00457/article_deploy/html/images/entropy-19-00457-g003.png?1506418673) (https://pub.mdpi-res.com/entropy/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g004.png? 1506418673) (https://pub.mdpi-res.com/entropy/entropy-19-

00457/article_deploy/html/images/entropy-19-00457-g005.png?1506418673) (https://pub.mdpi-rés.com/entropy/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g006.png? 1506418673) (https://pub.mdpi-res.com/entropy/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g007.png?1506418673) (https://pub.mdpi-res.com/entropy/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g008.png? 1506dde:878) y(https://pub.mdpi-res.com/entropy/entropy-19-

00457/article_deploy/html/images/entropy-19-00457-g009.png?1506418673) (https://pub.mdpi-res.çferentę̧̧y/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g010._..g? 1506418673) (https://pub.mdpi-res.com/entropy/entropy-19-

Statistics
00457/article_deploy/html/images/entropy-19-00457-g011.png?1506418673) (https://pub.mdpi-res,yam/entropy/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g012.rng? 1506418673) (https://pub.mdpi-res.com/entropy/entropy-19-

00457/article_deploy/html/images/entropy-19-00457-g013.png?1506418673) (https://pub.mdpiShow details res.com/entropy/entropy-19-00457/article_deploy/html/images/entropy-19-00457-g014.png? 1506418673) \square

Abstract

The Boltzmann-Gibbs (BG) entropy and its associated statistical mechanics were generalized, three decades ago, on the basis of the nonadditive entropy (), which recovers the BG entropy in the limit. The optimization of under appropriate simple constraints straightforwardly yields the so-called q exponential and q-Gaussian distributions, respectively qeneatizing the expnential and Gaussian ones, recovered for . These generalized functions ubiquitously emerge in complex systems, especially as economic and financial stylized features. These include price returns and volumes distributions, inter-occurrence times, characterization of wealth distributions and associated inequalities, among others. Here, we briefly review the basic concepts of this q-statistical generalization and focus on its rapidly growing applications in economics and finance.
Keywords: economics and finance (/search?q=economics+and+finance); nonadditive entropies (/search?q=nonadditive+entropies); nonextensive statistical mechanics (/search? $\mathbf{q}=$ nonextensive+statistical+mechanics)

1. Introduction

Nęeforsantifial and Gaussian functions ubiquitously emerge within linear theories in mathen....ics, physics, economics and elsewhere. To illustrate in what sense they are linear, let us focus on three typiper frepthematical situations, namely an ordinary differential equation, a partial derivative juation and an entropic optimization.

Consider the following ordinary differential equation:

Statistics

(1)

Marketing $\begin{aligned} & \text { The sintion is the well-known exponential function: }\end{aligned}$

Consider now the following partial derivative equation:

> Show details >
where is the Dirac delta function. The solution is the well-known Gaussian distribution:

Let us finally consider the following entropic functional:
with the constraint:
where BG stands for Boltzmann-Gibbs; k is a conventional positive constant (usually in physics, and elsewhere). If we optimize the functional (5) with the constraint (6) and:
being bounded below, we obtain:
where is the Lagrange parameter associated with Constraint (7); T is the absolute temperature within BG statistical mechanics (necessarily if is unbounded from above; but both and possibilities exist if is bounded also from above). The probability distribution corresponds to the celebrated BG weight, where is usually referred to as the partition function. Two particular cases emerge frequently. The first of them is with , hence , thus recovering solution (2). The second one is with, hence , thus recovering

 two probabilistically independent suibsystems A and B. In other words, we consider the case where the joint probability of factorizes, i.e., . We straightforwardly verify that the functional is additive in the sense of Penrose [1], namely that:
(9)

In the present brief review, we shall address a special class of nonlinearities, namely those emerging within nonextensive statistical mechanics, q-statistics for short [2,3,4,5,6].

Equation (1) is now generalized into the following nonlinear one:

Its solution is:

Necessary

where the q-exponential function is defined as, with if and zero otherwise. Its inverse function is the q-Ipqarifthmendefined as . To avoid any confusion, let us mention that many other q-deformatir ₹ of the exponential and logarithmic functions have been introduced in the literature for a variety of purposes; among them, we have for instance Ramanujan's q-exponential function, unrelated to the present one.

Statitistics (3) is now generalized into the following nonlinear one (referred to in the lite, ciure as the porous medium equation $[7,8,9]$):

Marketing

Its solution generalizes Equation (4) and is given by:

Show details >

with:
(14)

Before going on, let us mention that solution (13) implies that scales like, hence normal diffusion for, anomalous sub-diffusion for and super-diffusion for, which has recently been impressively validated (within a experimental error) in a granular medium [10]. The important connection between the power-law nonlinear diffusion (12) and the entropy described here below was first established by Plastino and Plastino in [11], where they considered a more general evolution equation that reduces to (12) in the particular case of vanishing drift (i.e.,). The Plastino-Plastino Equation [11] with generalizes the porous medium equation in the same sense that the linear Fokker-Planck equation generalizes the classical heat equation. The above nonlinear Equations (10) and (12) have been addressed here in order to provide some basic mathematical structure to approaches of various economic- and financial-specific features presented later on.

Let us now focus on the entropic functional upon which nonextensive statistical mechanics is

with . If we optimize this functional with the constraints (6) and:
 form of (11). The second one is with ; hence, recovers the form of soiution (13). Finaily, if we consider itself for two independent subsystems A and B, we straightforwardly verify the following nonlinear composition law:
hence

We then say that is nonadditive for . Entropic additivity is recovered if , which can occur in two different circumstances: for fixed k or for fixed q. Since k always appears in physics in the form , the limit is equivalent to. This is, by the way, the basic reason for which, in the limit of high temperatures or N dewessarggies, Maxwell-Boltzmann statistics, Fermi-Dirac, Bose-Einstein and q-str" "tics asymptotically coincide.

The above q-generalized thermostatistical theory has been useful in the study of a considerable numbeferencestal, artificial and social systems (see [12]). Theoretical and experimental illustı_ions in natural systems include long-range-interacting many-body classical Hamiltonian systems [13sthet5tids 17, 18,19,20] (see also [21,22]; the study of the long-range version of [23] wol surely be interesting), dissipative many-body systems [24], low-dimensional dissipative and conservative nonlinear dynamical systems [$\mathbf{2 5 , 2 6 , 2 7 , 2 8 , 2 9 , 3 0 , 3 1] \text { , cold atoms [32,33,34], plasmas [35,36] trapped }}$ atoms [37], spin-glasses [38], power-law anomalous diffusion [39,40], granular matter [1u], highenergy particle collisions [41,42,43,44,45,46], black holes and cosmology [47,48], chemistry [49], earthquakes [50], biology [51,52], solar wind [53,54], anomalous diffusion in relation to central limit theorems and overdamped systems [55,56,57,58,59,60,61,62,63,64], quantum show detangeils systems [65,66], quantum chaos [67], astronomical systems [68,69], thermal conductance [70], mathematical structures $\quad[71,72,73,74,75,76]$ and nonlinear quantum mechanics [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96], among others. Illustrations in artificial systems include signal and image processing $[97,98]$ and (asymptotically) scale-free networks $[99,100,101]$. In the realm of social systems, from now on, we focus on economics and financial theory $[102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118]$.

2. Applications in Economics and Finance

2.1. Prices and Volumes

Time series of prices (say of stocks, commodities, etc.), where t runs along chosen units (say seconds or minutes, or days, or years) are conveniently replaced by their corresponding returns (or logarithmic returns), defined as follows:

Returns do not depend on the specific currency of the prices and fluctuate around zero; in addition to that, their definition cancels systematic inflation. The distribution of returns usefully characterizes the price fluctuations. See an illustration in Figure 1, from [103] (see also [104,118]). The amounts of the corresponding transactions are currently referred to as volumes: see, for example, Figure 2.

Show details >

Figure 1. Empirical return densities (points) and q-Gaussians (solid lines) for normalized returns of the 10 top-volume stocks in the NYSE and in NASDAQ in 2001. The dotted line is a (visibly inadequate) Gaussian distribution. The 2- and 3-min curves are moved vertically for display purposes. From [103]. There exist in the literature quite a few other such examples, for other stocks and other years, with similar values of q.

Necessary

Preferences

Statistics

Figure 2. Empirical distributions (points) and q-exponential-like curves (solid lines) for normalized volumes of the 10 top-volume stocks in the NYSE and in the NASDAQ in 2001. The Marketing solid lines are fittings with a q-exponential multiplied by a power-law (analogous to the uensity of states prefactor that typically emerges for the distributions of quasi-particles in, say, condensed matter physics); from [103]. There exist in the literature quite a few other such examples, for other stocks and other years, with similar values of q and of finequsd itails fitting indices.

2.2. Volatilities

The volatility characterizes the size (standard deviation) of the fluctuations of returns. The volatility smile characterizes the correction of empirical volatilities with regard to a Gaussian-based expectation: see an illustration in Figure 3 (from [103]). To be more explicit, let us assume that we are handling the following Gaussian distribution, where characterizes univocally the volatility. To discuss the probability distribution of quantities such as , Queiros introduced [108] the q-log normal probability function:
where is a normalizing factor and are parameters. The particular case corresponds to the standard log-normal function. See Figure 4 for illustrative examples of this function. See also Figure 5 for a

Figure 3. Implied volatilities as a function of the strike price for call options on JY currency futures, traded on 16 May 2002, with 147 days left to expiration. In this typical example, the current price of a contract on Japanese futures is $\$ 79$, and the risk-free rate of return is. Circles correspond to volatilities implied by the market, whereas triangles correspond to volatilities Neqfeferaly our model with and . The dotted line is a guide to the eye. From [103].

Show details >

Figure 4. Illustrations of the q-log-normal density for and : blue , red and green. From [108].

Figure 5. Probability density function of a five-day volatility vs. . The symbols are obtained from the data, and the lines are the best fits with the Gamma distribution (dashed green) and the double-sided q-log-normal (red) with , and . For further details, see [108].

2.3. Inter-Occurrence Times

 increases with in each one of the exampies shown in Figure 7 and Figure $\mathbf{8}$. For a fixed value of, we verify that, with:

Necessary

Preferences

Statistics

Marketing

Show details >

Figure 6. Illustration of the relative daily price returns of the IBM stock between (a) January 2000 and June 2010 and (b) 27 August and 23 October 2002. The red line shows the threshold , which corresponds to an average inter-occurrence time of $=70$. In (b), the inter-occurrence times are indicated by arrows. From [106].

Figure 7. The mean inter-occurrence time vs. the absolute value of the loss threshold -Q. The continuous curves are fittings with. Top left: For the exchange rate of the U.S. Dollar against the British Pound, the index S\&P500, the IBM stock and crude oil (West Texas Intermediate (WTI)), from left to right in the plot; the corresponding values for are $0.95,0.92,0.97,0.927$ (with and). Similarly for the top right, bottom left and bottom right plots. From [107].

Necessary

Preferences

Statistics

Marketing

Show details >

Figure 8. The mean inter-occurrence time versus the absolute value of the loss threshold -Q: versus the representation of the same data of Figure 7. The continuous curve is a fitting with . From [107].

See the illustrations in Figure 9 and Figure 10. The fact that we have analytically enables us to straightforwardly obtain an explicit expression for the risk function, which is defined as the probability of having once again a fluctuation larger than within an interval at time t after the last large fluctuation. It can be shown $[106,109]$ that:

Necessary

Figure 9. (a) The distribution function of the inter-occurrence times for the relative daily price ProdferpencelbM in the period 1962-2010. The data points belong to $=2,5,10,30$ anc' '0 (in units of days), from bottom to top. The full lines show the fitted q-exponentials for typical values of .(b) The dependence of the parameters (squares, lower curve) and (circles, upper curve) on Statistics in the -exponential. (c) Confirmation that, for, the distribution function is a simple exporıential (i.e.,). The straight line is proportional to . From [106].

Marketing

Figure 10. The distribution function of the inter-occurrence times (as in Figure 9a) for the relative daily price returns of 16 examples of financial data, taken from different asset classes (stocks, indices, currencies, commodities). The assets are: (i) the stocks of IBM, Boeing (BA), General Electric (GE), Coca-Cola (KO); (ii) the indices Dow Jones (DJI), Financial Times Stock Exchange 100 (FTSE), NASDAQ, S\&P 500; (iii) the commodities Brent Crude Oil, West Texas

 Crone (DKKk), British Pound (GBP), Yen, Swiss Francs (SVVF). The fuii iines show the fitted q exponentials, which are the same as in Figure 9a. From [106].

Necessary

Preferences

Statistics

Marketing

Figure 11. Universal risk function from Equation (23) for the inter-occurrence time $=100$ and for the intervals $=1,5,20,100$ days (from bottom to top). From [106].

2.4. Wealth

Wealth inequality within a given country is a classical and most important matter, which can be characterized within q-statistics as shown in [105]: see Figure 12 and Figure 13. The larger the index is, the larger the inequality. As we verify, the U.K. and Germany are more egalitarian countries than the U.S. and Brazil. In addition to that, inequality appears to increase in the U.S. and Brazil, at least during the years indicated in the plots.

Figure 12. Binned inverse cumulative distribution of the county, (U.S.) and (Brazil, Germany and U.K.), where denotes the Personal Income and denotes the Gross Domestic Product of countries. Three distributions are displayed for comparison: (i) q-Gaussian (with) (dot-dashed);
 linear scale, to make more evident the quality of the fitting at the low region (in (c,d), the ()Gaussian and the log-normal curves are superposed and, so, are visually indistinguishable). Preferences The positions of the knees are indicated. The ankle is particularly pronounced in (c), thouyn it is also present in the other cases. From [105], where further details are available.

Statistics

Marketing

Figure 13. Evolution of parameter q for the U.S. (squares), Brazil (circles), the U.K. (up triangles) and Germany (down triangles). The parameters (for each country) are constant for all years: = 2.1, = 1.7, = 1.5, = 1.4. Lines are only guides to the eyes. As we verify, in some cases, the index q remains invariant along time, whereas in others, it evolves; the functional forms remain however the same as indicated in Figure 12. From [105].

Another index that characterizes the wealth of a country and its inequalities is associated with the

Figure 14. Inverse cumulative probability distribution of Japanese land prices for the year 1998. The solid curve is a q-Gaussian with, which corresponds to the slope , and 188,982 Yen. From [105], where further details are available.

3. Conclusions and Perspectives Necessary

We have described a variety of financial and economic properties with a plethora of q-indices, such as. For a given system, how many independent indices should we expect? The full answer to this question remains up to now elusive. It seems however that only a few of them are essentially independent, all of the others being (possibly simple) functions of those few. Such an algebraic strutiatistigs first advanced and described in [119] and has been successfully verified in a solar wind [53] (see also [6] and the references therein) and elsewhere; it has recently been generalized [120haketing related to the Moebius group. The central elements of these algebraic r ictures appear to constitute what is currently referred to in the literature as q-triplets [122]. The clarification and possible verification of such structures constitutes nowadays an important open question, whose further study would surely be most useful.

Show details >

Another crucial question concerns the analytic calculation from first principles of some or all of the above q-indices. This is in principle possible (as illustrated in $[63,64,65,66]$), but it demands the complete knowledge of the microscopic model of the specific class of the complex system. For the full set of the q-indices shown in the present overview, such models are not available, even if they would be very welcome.

Let us finally emphasize that many other statistical approaches exist for the quantities focused on in the present overview. However, as announced in the title of this paper, this is out of the present scope. The present paper is one among various others belonging to the same Special Issue of the journal Entropy. The entire set of articles is expected to enable comparisons between these many approaches.

Acknowledgments

I thank C. Anteneodo, E.P. Borges, L. Borland, E.M.F. Curado, F.D. Nobre, R. Osorio, A.R.

especially J. Ludescher for authorizing me to use, in the present review, our unpublished figures of [1 07]. The financial support from CNPq and FAPERJ (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, and Fundacao de Amparo a Pesquisa do Rio de Janeiro, Brazilian funding agencies) and from the John Templeton Foundation (U.S.) are also gratefully acknowledged.

Conflicts of Interest
The author declares no conflict of interest.
(https://www.cookiebot.com/en/what-is-behind-powered-by-cookiebot/).

References

1. Penrose, O. Foundations of Statistical Mechanics: A Deductive Treatment; Pergamon: Oxford, UK, 1970; p. 167. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Foundations+of+Statistical+Mechanics:+A+Deductive+Treatment\&author=Penrose, +O.\&publication_year=1970)]
2. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 1988, 53, 479487. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Possible+generalization+of+Boltzmann\%E2\%80\%93Gibbs+statistics\&author=Tsalli Neces,+se.'\&publication_year=1988\&journal=J.+Stat.+Phys.\&volume=53\&pages=479\%E2 . ر0 \%93487)]
3.Prefereages E.M.F.; Tsallis, C. Generalized statistical mechanics: Connecti with thermodynamics. J. Phys. A 1991, 24, L69-L72. [Google Scholar
Stathtrps://scholar.google.com/scholar_lookup?
title=Generalized+statistical+mechanics:+Connection+with+thermodynamics\&author=C urado,+E.M.F.\&author=Tsallis,+C.\&publication_year=1991\&journal=J.+Phys.+A\&volume
Marketidig
3. Tsallis, C.; Mendes, R.S.; Plastine, A.R. The role of constraints within generalized nonextensive statistics. Physica A 1998, 261, 534-554. [Googla etails Scholar (https://scholar.google.com/scholar_lookup? title=The+role+of+constraints+within+generalized+nonextensive+statistics\&author=Tsal lis,+C.\&author=Mendes,+R.S.\&author=Plastino,+A.R.\&publication_year=1998\&journal=P hysica+A\&volume=261\&pages=534\%E2\%80\%93554)]
4. Gell-Mann, M.; Tsallis, C. (Eds.) Nonextensive Entropy-Interdisciplinary Applications; Oxford University Press: New York, NY, USA, 2004. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Nonextensive+Entropy-
Interdisciplinary+Applications\&author=Gell-
Mann,+M.\&author=Tsallis,+C.\&publication_year=2004)]
5. Tsallis, C. Introduction to Nonextensive Statistical Mechanics-Approaching a Complex World; Springer: New York, NY, USA, 2009. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Introduction+to+Nonextensive+Statistical+Mechanics-
6. Muskat, M. The Flow of Homogeneous Fluids through Porous Media; McGraw-Hill: New York, NY, USA, 1937. [Google Scholar (https://scholar.google.com/scholar_lookup? title=The+Flow+of+Homogeneous+Fluids+through+Porous+Media\&author=Muskat,+M.\& publication_year=1937)]
7. Frank, T.D. Nonlinear Fokker-Planck Equations: Fundamentals and Applications; Series Synergetics; Springer: Berlin, Germany, (https://www.cookiebot.com/en/what- 2005 . (https://scholar.google.com/scholar_lookup? title=Nonlinear+Fokker\%E2\%80\%93Planck+Equations:+Fundamentals+and+Application s\&author=Frank,+T.D.\&publication_year=2005)]
8. Tsallis, C.; Bukman, D.J. Anomalous diffusion in the presence of external forces: Exact timedependent solutions and their thermostatistical basis. Phys. Rev. E 1996, 54, R2197-R2200. [Google Scholar (https://scholar.google.com/scholar_looku|'? title=Anomalous+diffusion+in+the+presence+of+external+forces:+Exact+timedependent+solutions+and+their+thermostatistical+basis\&author=Tsallis,+C.\&author=Bu kman,+D.J.\&publication_year=1996\&journal=Phys.+Rev.+E\&volume=54\&pages=R2197\% E2\%80\%93R2200)]

1@ecessahy, G.; Richefeu, V.; Stasiak, M.; Atman, A.P.F. Experimental validation of nonextr sive scaling law in confined granular media. Phys. Rev. Lett. 2015, 115, 238301. [Google Scholar (https://scholar.google.com/scholar_lookup?
Preferences
title=Experimental+validation+of+nonextensive+scaling+law+in+confined+granuıar+med ia\&author=Combe,+G.\&author=Richefeu,+V.\&author=Stasiak,+M.\&author=Atman,+A.P.F. Sta\&phiø\&ication_year=2015\&journal=Phys.+Rev.+Lett.\&volume=115\&pages=238301
11. Plastino, A.R.; Plastino, A. Non-extensive statistical mechanics and generalized Fokker-Planck Markqutänign. Physica A 1995, 222, 347-354. [Google cholar (https://scholar.google.com/scholar_lookup?title=Nonextensíve+statístícal+mechanícs+and+generalized+Fokker\�\�\�Planck+equation \&author=Plastino,+A.R.\&author=Plastino,+A.\&publication_year=199 क्̧\&iowrataRigysjica+ A\&volume=222\&pages=347\%E2\%80\%93354)]
12. Nonextensive Statistical Mechanics and Thermodynamics. Available online: http://tsallis.cat.c bpf.br/biblio.htm (http://tsallis.cat.cbpf.br/biblio.htm) (accessed on 29 August 2017).
13. Anteneodo, C.; Tsallis, C. Breakdown of exponential sensitivity to initial conditions: Role of the range of interactions. Phys. Rev. Lett. 1998, 80, 5313-5316. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=Breakdown+of+exponential+sensitivity+to+initial+conditions:+Role+of+the+range+ of+interactions\&author=Anteneodo,+C.\&author=Tsallis,+C.\&publication_year=1998\&jou rnal=Phys.+Rev.+Lett.\&volume=80\&pages=5313\%E2\%80\%935316)]
14. Rapisarda, A.; Pluchino, A. Nonextensive thermodynamics and glassy behavior. Europhys. News 2005, 36, 202-206. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonextensive+thermodynamics+and+glassy+behavior\&author=Rapisarda,+A.\&aut hor=Pluchino,+A.\&publication_year=2005\&journal=Europhys.+News\&volume=36\&pages =202\%E2\%80\%93206)]
15. Chavanis, P.-H.; Campa, A. Inhomogeneous Tsallis distributions in the HMF Modeen/ EyhatJ. B 2010, 76, 581-611. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Inhomogeneous+Tsallis+distributions+in+the+HMF+model\&author=Chavanis,+P.H.\&author=Campa,+A.\&publication_year=2010\&journal=Eur.+Phys.+J.+B\&volume=76\&p ages $=581 \% \mathrm{E} 2 \% 80 \% 93611$)]
16. Cirto, L.J.L.; Assis, V.R.V.; Tsallis, C. Influence of the interaction range on the thermostatistics of a classical many-body system. Physica A 2014, 393, 286-296. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=Influence+of+the+interaction+range+on+the+thermostatistics+of+a+classical+man y -
body+system\&author=Cirto,+L.J.L.\&author=Assis,+V.R.V.\&author=Tsallis,+C.\&publicatio n_year=2014\&journal=Physica+A\&volume=393\&pages=286\%E2\%80\%93296)]

Neceडssary

17. Christodoulidi, H.; Tsallis, C.; Bountis, T. Fermi-Pasta-Ulam model with long-range interactions: Dynamics and thermostatistics. EPL 2014, 108, 40006. [Google Scholar Preferences $\begin{gathered}\text { https:Ilscholar.google.com/scholar_lookup? }\end{gathered}$
title=Fermi\%E2\%80\%93Pasta\%E2\%80\%93Ulam+model+with+long-
Statientige+interactions:+Dynamics+and+thermostatistics\&author=Christodoulidi,+r autho r=Tsallis,+C.\&author=Bountis,+T.\&publication_year=2014\&journal=EPL\&volume=108\&p Markgeting ${ }^{\text {(2006)] }}$
18. Christodoulidi, H.; Bountis, T.; Tsallis, C.; Drossos, L. Dynamics and Statistics of the Fermi-Pasta-Ulam β-model with different ranges of particle interactions. JSTAT 2016, 123206. [Google Scholar (https://scholar.google.cembsfaedarijookup? title=Dynamics+and+Statistics+of+the+Fermi\%E2\%80\%93Pasta\%E2\%80\%93Ulam+\%CE \%B2\%E2\%80\%93model+with+different+ranges+of+particle+interactions\&author=Christ odoulidi,+H.\&author=Bountis,+T.\&author=Tsallis,+C.\&author=Drossos,+L.\&publication year=2016\&journal=JSTAT\&pages=123206)]
19. Bagchi, D.; Tsallis, C. Sensitivity to initial conditions of d-dimensional long-range-interacting quartic Fermi-Pasta-Ulam model: Universal scaling. Phys. Rev. E 2016, 93, 062213. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Sensitivity+to+initial+conditions+of+d-dimensional+long-rangeinteracting+quartic+Fermi\%E2\%80\%93Pasta\%E2\%80\%93Ulam+model:+Universal+scalin g\&author=Bagchi,+D.\&author=Tsallis,+C.\&publication_year=2016\&journal=Phys.+Rev.+ E\&volume=93\&pages=062213)]
20. Bagchi, D.; Tsallis, C. Long-ranged Fermi-Pasta-Ulam systems in thermal contact: Crossover from q-statistics to Boltzmann-Gibbs statistics. Phys. Lett. A 2017, 381, 1123-1128. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Longranged+Fermi\�\�\�Pasta\�\�\�Ulam+systems+in+thermal+contact:+Cros sover+from+q-

 0\%931128)]
21. Lucena, L.S.; da Silva, L.R.; Tsallis, C. Departure from Boltzmann-Gibbs statistics makes the hydrogen-atom specific heat a computable quantity. Phys. Rev. E 1995, 51, 6247-6249. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Departure+from+Boltzmann\%E2\%80\%93Gibbs+statistics+makes+the+hydrogen- , atom+specific+heat+a+computable+quantity\&author=Lucena,+L.S.\&author=da+Silva,+L. R.\&author=Tsallis,+C.\&publication_year=1995\&journal=Phys.+Rev.+E\&volume=51\&page s=6247\%E2\%80\%936249)]
22. Nobre, F.D.; Tsallis, C. Infinite-range Ising ferromagnet-thermodynamic limit within generalized statistical mechanics. Physica A 1995, 213, 337-356. [Google Scholar Necessary
(https!//scholar.google.com/scholar_lookup?title=Infinite-range+Ising+ferromagnetthermodynamic+limit+within+generalized+statistical+mechanics\&author=Nobre,+F.D.\&a
Prefftreneqsallis,+C.\&publication_year=1995\&journal=Physica+A\&volume=213\&pas ;=337 \%E2\%80\%93356)]
23.tatiatide, A.O.; Tsallis, C.; Zanette, S.I. Criticality of the anisotropic quantum Heisenbe model on a self-dual hierarchical lattice. Phys. Rev. Lett. 1983, 51, 145-147. [Google Scholar Markettpsi//scholar.google.com/scholar_lookup? title=Criticality+of+the+anisotropic+quantum+Heisenberg+model+on+a+selfdual+hierarchica!+!attice\&author=Caride,+A.O.Rauthor=Tsa!!is,+C.\&author=Zanette,+S.!. \&publication_year=1983\&journal=Phys.+Rev.+Lett.\&volume=51\&pages=145\%E2\%80\%93 147)]
23. Miritello, G.; Pluchino, A.; Rapisarda, A. Central limit behavior in the Kuramoto model at the 'edge of chaos'. Physica A 2009, 388, 4818-4826. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=Central+limit+behavior+in+the+Kuramoto+model+at+the+\%E2\%80\%98edge+of+cha os\%E2\%80\%99\&author=Miritello,+G.\&author=Pluchino,+A.\&author=Rapisarda,+A.\&publ ication_year=2009\&journal=Physica+A\&volume=388\&pages=4818\%E2\%80\%934826)]
24. Tirnakli, U.; Tsallis, C.; Lyra, M.L. Circular-like maps: sensitivity to the initial conditions, multifractality and nonextensivity. Eur. Phys. J. B 1999, 11, 309-315. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Circular-
like+maps:+sensitivity+to+the+initial+conditions,+multifractality+and+nonextensivity\&a uthor=Tirnakli,+U.\&author=Tsallis,+C.\&author=Lyra,+M.L.\&publication_year=1999\&journ al=Eur.+Phys.+J.+B\&volume=11\&pages=309\%E2\%80\%93315)]
25. Baldovin, F.; Robledo, A. Universal renormalization-group dynamics at the onset of chaos in logistic maps and nonextensive statistical mechanics. Phys. Rev. E 2002, 66, R045104. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Universal+renormalization-
group+dynamics+at+the+onset+of+chaos+in+logistic+maps+and+nonextensive+statisti
 nal=Phys.+Rev.+E\&volume=66\&pages=R045104角-behind-powered-by-cookiebot/).
26. Baldovin, F.; Robledo, A. Nonextensive Pesin identity. Exact renormalization group analytical results for the dynamics at the edge of chaos of the logistic map. Phys. Rev. E 2004, 69, R045202. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonextensive+Pesin+identity.+Exact+renormalization+group+analytical+results+fo r+the+dynamics+at+the+edge+of+chaos+of+the+logistic+map\&author=Baldovin,+F.\&ayt hor=Robledo,+A.\&publication_year=2004\&journal=Phys.+Rev.+E\&volume=69\&pages=R 045202)]
27. Mayoral, E.; Robledo, A. Tsallis' q index and Mori's q phase transitions at edge of chaos. Phys. Rev. E 2005, 72, 026209. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Tsallis\%E2\%80\%99+q+index+and+Mori\%E2\%80\%99s+q+phase+transitions+at+edg Necessary
e+of+chaos\&author=Mayoral,+E.\&author=Robledo,+A.\&publication_year=2005\&jour.ıal= Phys.+Rev.+E\&volume=72\&pages=026209)]
29referencles. Tirnaki, U.; Tsallis, C.; Beck, C. A closer look at time averages of the logistic map at ue edge of chaos. Phys. Rev. E 2009, 79, 056209. [Google Scholar Stą̈htips://scholar.google.com/scholar_lookup?
title=A+closer+look+at+time+averages+of+the+logistic+map+at+the+edge+of+chaos\&au
 Phys.+Rev.+E\&volume=79\&pages=056209)]
28. Luque, B.; Lacasa, L.; Robledo, A. Feigenbaum graphs at the onset of chaos. Phys. Lett. A 2012, 376, 3625. [Google Scholar (https://scholar.google.csmbヶqaekajookup? title=Feigenbaum+graphs+at+the+onset+of+chaos\&author=Luque,+B.\&author=Lacasa,+ L.\&author=Robledo,+A.\&publication_year=2012\&journal=Phys.+Lett.+A\&volume=376\&p ages=3625\&doi=10.1016/j.physleta.2012.10.050)]
[CrossRef (https://dx.doi.org/10.1016/j.physleta.2012.10.050)]
29. Tirnakli, U.; Borges, E.P. The standard map: From Boltzmann-Gibbs statistics to Tsallis statistics. Nat. Sci. Rep. 2016, 6, 23644. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=The+standard+map:+From+Boltzmann\%E2\%80\%93Gibbs+statistics+to+Tsallis+sta tistics\&author=Tirnakli,+U.\&author=Borges,+E.P.\&publication_year=2016\&journal=Nat.+ Sci.+Rep.\&volume=6\&pages=23644)]

Douglas, P.; Bergamini, S.; Renzoni, F. Tunable Tsallis Distributions in Dissipative Optical Lattices. Phys. Rev. Lett. 2006, 96, 110601. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Tunable+Tsallis+Distributions+in+Dissipative+Optical+Lattices\&author=Douglas,+P .\&author=Bergamini,+S.\&author=Renzoni,+F.\&publication_year=2006\&journal=Phys.+Re v.+Lett.\&volume=96\&pages=110601)] (https://www.cookiebot.com/en/what-is-behind-powered-by-cookiebot/)
33. Bagci, G.B.; Tirnakli, U. Self-organization in dissipative optical lattices. Chaos 2009, 19, 033113. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Selforganization+in+dissipative+optical+lattices\&author=Bagci,+G.B.\&author=Tirnakli,+U.\& publication_year=2009\&journal=Chaos\&volume=19\&pages=033113)]
34. Lutz, E.; Renzoni, F. Beyond Boltzmann-Gibbs statistical mechanics in optical lattices. Nat. Phys. 2013, 9, 615-619. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Beyond+Boltzmann\%E2\%80\%93Gibbs+statistical+mechanics+in+optical+lattices\& author=Lutz,+E.\&author=Renzoni,+F.\&publication_year=2013\&journal=Nat.+Phys.\&volu me=9\&pages=615\%E2\%80\%93619)]
35. Liu, B.; Goree, J. Superdiffusion and non-Gaussian statistics in a driven-dissipative 2D dusty Nedessary. Phys. Rev. Lett. 2008, 100, 055003. [Google Sr lar (https://scholar.google.com/scholar_lookup?title=Superdiffusion+and+non-Gaussian+statistics+in+a+driven-
Prefrences
dissinative+2D+dusty+plasma\&author=Liu,+B.\&author=Go
8\&journal=Phys.+Rev.+Lett.\&volume=100\&pages=055003)]
36. Statistics mixed Cairns-Tsallis electron distribution. Phys. Plasmas 2015, 22, 052112. [Google Scholar Mar(hnttisg//scholar.google.com/scholar_lookup?
title=Screening+and+sheath+formation+in+a+nonequilibrium+mixed+Cairns-
Tsallis+electron+distribution\&author=Bouzit,+O.\&author=Gougam,+L.A.\&author=Tribec he,+M.\&publication_year=2015\&journal=Phys.+Plasmas\&volume=22s世३.
37. DeVoe, R.G. Power-law distributions for a trapped ion interacting with a classical buffer gas. Phys. Rev. Lett. 2009, 102, 063001. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Powerlaw+distributions+for+a+trapped+ion+interacting+with+a+classical+buffer+gas\&author= DeVoe,+R.G.\&publication_year=2009\&journal=Phys.+Rev.+Lett.\&volume=102\&pages=06 3001)]
38. Pickup, R.M.; Cywinski, R.; Pappas, C.; Farago, B.; Fouquet, P. Generalized spin glass relaxation. Phys. Rev. Lett. 2009, 102, 097202. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Generalized+spin+glass+relaxation\&author=Pickup,+R.M.\&author=Cywinski,+R.\&a uthor=Pappas,+C.\&author=Farago,+B.\&author=Fouquet,+P.\&publication_year=2009\&jou rnal=Phys.+Rev.+Lett.\&volume=102\&.pages=097202)]
39. Tsallis, C.; de Souza, A.M.C.; Maynard, R. Derivation of Lévy-type anomalous superdiffusion from generalized statistical mechanics. In Lévy Flights and Related Topics in Physics; Shlesinger, M.F., Zaslavsky, G.M., Frisch, U., Eds.; Springer: Berlin, Germany, 1995; p. 269. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Derivation+of+L\%C3\%A9vy-

 269)]
40. Tsallis, C.; Levy, S.V.F.; de Souza, A.M.C.; Maynard, R. Statistical-mechanical foundation of the ubiquity of Levy distributions in nature. Phys. Rev. Lett. 1995, 75, 3589-3593. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Statisticaimechanical+foundation+of+the+ubiquity+of+Levy+distributions+in+nature\&author=Tsal is,+C.\&author=Levy,+S.V.F.\&author=de+Souza,+A.M.C.\&author=Maynard,+R.\&publicatio n_year=1995\&journal=Phys.+Rev.+Lett.\&volume=75\&pages=3589\%E2\%80\%933593)]
41. CMS Collaboration. Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at and 2.36 TeV . J. High Energy Phys. 2010, 2, 41. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Transverse-
Necessary
momentum+and+pseudorapidity+distributions+of+charged+hadrons+in+pp+collisiuns+ at++++s++=+0.9+++and+2.36+TeV\&author=CMS+Collaboration\&publication_year=2010\&j Prefartrateg.+High+Energy+Phys.\&volume=2\&pages=41\&doi=10.1007/JHEP02(201(41)] [CrossRef (https://dx.doi.org/10.1007/JHEP02(2010)041)]
4\$.tatistBrsCollaboration. Transverse-momentum and pseudorapidity distributions of harged hadrons in pp collisions at TeV. Phys. Rev. Lett. 2010, 105, 022002. [Google Scholar
Markettinjo/lscholar.google.com/scholar_lookup?title=Transversemomentum+and+pseudorapidity+distributions+of+charged+hadrons+in+pp+collisions+ at++++s++=+7+++TeV乍author=CMS+Co!laboration\&publication_year=2010Rjourna!=Phy s.+Rev.+Lett.\&volume=105\&pages=022002)]

Show details >

43. Marques, L.; Andrade, E., II; Deppman, A. Nonextensivity of hadronic systems. Phys. Rev. D 2013, 87, 114022. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonextensivity+of+hadronic+systems\&author=Marques,+L.\&author=Andrade,+E.,+ II\&author=Deppman,+A.\&publication_year=2013\&journal=Phys.+Rev.+D\&volume=87\&pa ges=114022)]
44. Marques, L.; Cleymans, J.; Deppman, A. Description of high-energy pp collisions using Tsallis thermodynamics: Transverse momentum and rapidity distributions. Phys. Rev. D 2015, 91, 054025. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Description+of+highenergy+pp+collisions+using+Tsallis+thermodynamics:+Transverse+momentum+and+ra pidity+distributions\&author=Marques,+L.\&author=Cleymans,+J.\&author=Deppman,+A.\& publication_year=2015\&journal=Phys.+Rev.+D\&volume=91\&pages=054025)]
45. Tsallis, C.; Arenas, Z.G. Nonextensive statistical mechanics and high energy physics. EPJ 2014, 71, 00132. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonextensive+statistical+mechanics+and+high+energy+physics\&author=Tsallis,+ C.\&author=Arenas,+Z.G.\&publication_year=2014\&journal=EPJ\&volume=71\&pages=0013 2)]
 in pp and Pb-Pb collisions at TeV. Phys. Rev. C 2017, 95, 064606. [Google Scholar (https://scholar.google.com/scholar_lookup?title=K*
(892)0+and+\%CE\%A6(1020)+meson+production+at+high+transverse+momentum+in+pp +and+Pb-
Pb+collisions+at+++++s++N+N++++=+2.76+++TeV\&author=ALICE+Collaboration\&public ation_year=2017\&journal=Phys.+Rev.+C\&volume=95\&pages=064606)]
46. Oliveira, H.P.; Soares, I.D. Dynamics of black hole formation: Evidence for nonextensivity. Phys. Rev. D 2005, 71, 124034. [Google Scholar
(https://scholar.google.com/scholar_lookup?
title=Dynamics+of+black+hole+formation:+Evidence+for+nonextensivity\&author=Oliveir a,+H.P.\&author=Soares,+l.D.\&publication_year=2005\&journal=Phys.+Rev.+D\&volumo=71 Necessary
\&pages=124034)]
47. Komatsu, N.; Kimura, S. Entropic cosmology for a generalized black-hole entropy. Phıs. Rev. Preferenses 88, 083534. [Google Scholar (https://scholar.google.com/scholar_ıookup? title=Entropic+cosmology+for+a+generalized+black-
Statieteasentropy\&author=Komatsu,+N.\&author=Kimura,+S.\&publication_year=201§ ournal =Phys.+Rev.+D\&volume=88\&pages=083534)]

49arkietangV.H.C.; Aquilanti, V.; de Oliveira, H.C.B.; Mundim, K.C. Uniform descriptior f nonArrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs. classical non-extensive distribution. Chem. Phys. Lett. 2013, 590, 201-207. [Google Scholar (https://scholar.google.cgmbs\&aelaribookup? title=Uniform+description+of+non-
Arrhenius+temperature+dependence+of+reaction+rates,+and+a+heuristic+criterion+for +quantum+tunneling+vs.+classical+non-
extensive+distribution\&author=Silva,+V.H.C.\&author=Aquilanti,+V.\&author=de+Oliveira, +H.C.B.\&author=Mundim,+K.C.\&publication_year=2013\&journal=Chem.+Phys.+Lett.\&vol ume=590\&pages=201\%E2\%80\%93207)]
50. Antonopoulos, C.G.; Michas, G.; Vallianatos, F.; Bountis, T. Evidence of q-exponential statistics in Greek seismicity. Physica A 2014, 409, 71-77. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Evidence+of+qexponential+statistics+in+Greek+seismicity\&author=Antonopoulos,+C.G.\&author=Mich as,+G.\&author=Vallianatos,+F.\&author=Bountis,+T.\&publication_year=2014\&journal=Phy sica+A\&volume=409\&pages=71\%E2\%80\%9377)]
51. Upadhyaya, A.; Rieu, J.-P.; Glazier, J.A.; Sawada, Y. Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates. Physica A 2001, 293, 549-558. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Anomalous+diffusion+and+non-
Gaussian+velocity+distribution+of+Hydra+cells+in+cellular+aggregates\&author=Upadh yaya,+A.\&author=Rieu,+J.-
(https://www.cookiebot.com/en/what-

52. Bogachev, M.I.; Kayumov, A.R.; Bunde, A. Universal internucleotide statistics in full genomes: A footprint of the DNA structure and packaging? PLoS ONE 2014, 9, e112534. [Google Scholar
(https://scholar.google.com/scholar_lookup?
title=Universal+internucleotide+statistics+in+full+genomes:+A+footprint+of+the+DNA+s tructure+and+packaging?
\&author=Bogachev,+M.I.\&author=Kayumov,+A.R.\&author=Bunde,+A.\&publication_year= 2014\&journal=PLoS+ONE\&volume=9\&pages=e112534)]
53. Burlaga, L.F.; Vinas, A.F. Triangle for the entropic index q of non-extensive statistical mechanics observed by Voyager 1 in the distant heliosphere. Physica A 2005, 356, 375-384. Necessary
[Google Scholar
(https://scholar.google.com/scholar_loonup? title=Triangle+for+the+entropic+index+q+of+non-
Pretentenspre+statistical+mechanics+observed+by+Voyager+1+in+the+distant+helic , here \&author=Burlaga,+L.F.\&author=Vinas,+A.F.\&publication_year=2005\&journal=Physica+A
Staftyflesme=356\&pages=375\%E2\%80\%93384)]
54. Burlaga, L.F.; Ness, N.F. Magnetic field strength fluctuations and the q-triplet in the heliosheath: Marketiger 2 observations from 91.0 to 94.2 AU at latitude $30^{\circ} \mathrm{S}$. Astrophys. J. 2013, ${ }^{\text {²5, }} 35$. [Google Scholar
(https://scholar.google.com/scholar_lookup? title=Magnetic+fie!d+strength+fluctuations+and+the+q-
triplet+in+the+heliosheath:+Voyager+2+observations+from+91.0+to+94.2+AU+at+latitud e+30\%C2\%B0+S\&author=Burlaga,+L.F.\&author=Ness,+N.F.\&publication_year=2013\&jour nal=Astrophys.+J.\&volume=765\&pages=35)]
55. Moyano, L.G.; Tsallis, C.; Gell-Mann, M. Numerical indications of a q-generalised central limit theorem. Europhys. Lett. 2006, 73, 813-819. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Numerical+indications+of+a+qgeneralised+central+limit+theorem\&author=Moyano,+L.G.\&author=Tsallis,+C.\&author= Gell-
Mann,+M.\&publication_year=2006\&journal=Europhys.+Lett.\&volume=73\&pages=813\%E 2\%80\%93819)]
56. Thistleton, W.J.; Marsh, J.A.; Nelson, K.P.; Tsallis, C. q-Gaussian approximants mimic nonextensive statistical-mechanical expectation for many-body probabilistic model with long-range correlations. Cent. Eur. J. Phys. 2009, 7, 387-394. [Google Scholar (https://scholar.google.com/scholar_lookup?title=q-
Gaussian+approximants+mimic+non-extensive+statistical-
mechanical+expectation+for+many-body+probd

 ages=387\%E2\%80\%93394)]
57. Chavanis, P.-H. Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological population. Eur. Phys. J. B 2008, 62, 179-208. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonlinear+mean+field+Fokker\%E2\%80\%93Planck+equations.+Application+to+the+ chemotaxis+of+biological+population\&author=Chavanis,+P.-
H.\&publication_year=2008\&journal=Eur.+Phys.+J.+B\&volume=62\&pages=179\%E2\%80\% 93208)]
58. Umarov, S.; Tsallis, C.; Steinberg, S. On a q-central limit theorem consistent with nonextensive Necessary,
statistical
mechanics. J. Math. 2008, 76, 307-328. [Google Scıolar (https://scholar.google.com/scholar_lookup?title=On+a+q-
Pretenfpgadimit+theorem+consistent+with+nonextensive+statistical+mechanics\&a ior=U marov,+S.\&author=Tsallis,+C.\&author=Steinberg,+S.\&publication_year=2008\&journal=J.
Statistith.\&volume=76\&pages=307\%E2\%80\%93328)]
59. Umarov, S.; Tsallis, C.; Gell-Mann, M.; Steinberg, S. Generalization of symmetric α-stable Lévy Markestringtions for q > 1. Math. Phys. 2010, 51, 033502. [Google ~cholar (https://scholar.google.com/scholar_lookup?
title=Generalization+of+symmetric $+\%$ CE $\%$ B1-
stable+L\%C3\%A9vy+distributions+for+q+>+1\&author=Umarov,+S.\&author=Tsallis,+C.\&a uthor=Gell-
Mann,+M.\&author=Steinberg,+S.\&publication_year=2010\&journal=Math.+Phys.\&volume =51\&pages=033502)]
60. Nelson, K.P.; Umarov, S. Nonlinear statistical coupling. Physica A 2010, 389, 2157-2163. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonlinear+statistical+coupling\&author=Nelson,+K.P.\&author=Umarov,+S.\&publicati on_year=2010\&journal=Physica+A\&volume=389\&pages=2157\%E2\%80\%932163)]
61. Hanel, R.; Thurner, S.; Tsallis, C. Limit distributions of scale-invariant probabilistic models of correlated random variables with the q-Gaussian as an explicit example. Eur. Phys. J. B 2009, 72, 263-268. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Limit+distributions+of+scale-
invariant+probabilistic+models+of+correlated+random+variables+with+the+q-

 $80 \% 93268)]$
62. Umarov, S.; Tsallis, C. The limit distribution in the q-CLT for $q \geq 1$ is unique and can not have a compact support. J. Phys. A 2016, 49, 415204. [Google Scholar (https://scholar.google.com/scholar_lookup?title=The+limit+distribution+in+the+qCLT+for+q+\�\�\�+1+is+unique+and+can+not+have+a+compact+support\&authqr $=$ Umarov,+S.\&author=Tsallis,+C.\&publication_year=2016\&journal=J.+Phys.+A\&volume= 49\&pages=415204)]
63. Andrade, J.S., J.; da Silva, G.F.T.; Moreira, A.A.; Nobre, F.D.; Curado, E.M.F. Thermostatistics of overdamped motion of interacting particles. Phys. Rev. Lett. 2010, 105, 260601. [Google Scholar
(https://scholar.google.com/scholar_lookup?
Necessary title=Thermostatistics+of+overdamped+motion+of+interacting+particles\&author=A!ıdra de,+J.S.,+Jr.\&author=da+Silva,+G.F.T.\&author=Moreira,+A.A.\&author=Nobre,+F.D.\&auth Prefarghefolo,+E.M.F.\&publication_year=2010\&journal=Phys.+Rev.+Lett.\&volume= ;\&pag es=260601)]
68.tatilisfires C.M.; Carmona, H.A.; Andrade, J.S., J.; Moreira, A.A. General continuum apr ach for dissipative systems of repulsive particles. Phys. Rev. E 2016, 93, 060103(R). [Google Scholar Markettpsi//scholar.google.com/scholar_lookup?
title=General+continuum+approach+for+dissipative+systems+of+repulsive+particles\&a uthor=Vieira,+C.M. \&author=Carmona,+H.A. \&author=Andrade,+J.S.,+.Ir.\&author=Moreira, +A.A.\&publication_year=2016\&journal=Phys.+Rev.+E\&volume=93\&pages=060103(R))]
65. Caruso, F.; Tsallis, C. Nonadditive entropy reconciles the area law in quantum systems with classical thermodynamics. Phys. Rev. E 2008, 78, 021102. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonadditive+entropy+reconciles+the+area+law+in+quantum+systems+with+classi cal+thermodynamics\&author=Caruso,+F.\&author=Tsallis,+C.\&publication_year=2008\&jo urnal=Phys.+Rev.+E\&volume=78\&pages=021102)]
66. Carrasco, J.A.; Finkel, F.; Gonzalez-Lopez, A.; Rodriguez, M.A.; Tempesta, P. Generalized isotropic Lipkin-Meshkov-Glick models: Ground state entanglement and quantum entropies. J. Stat. Mech. 2016, 2016, 033114. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Generalized+isotropic+Lipkin-Meshkov-
Glick+models:+Ground+state+entanglement+an(atippi/twwiweqpikjabsdagmbonewhatsco ,+J.A.\&author=Finkel,+F.\&author=Gonzalez-is-behind-powered-by-cookiebot/).
 nal=J.+Stat.+Mech.\&volume=2016\&pages=033114)]
67. Weinstein, Y.S.; Lloyd, S.; Tsallis, C. Border between between regular and chaotic quantum dynamics. Phys. Rev. Lett. 2002, 89, 214101. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Border+between+between+regular+and+chaotic+quantum+dynamics\&author=Wein stein,+Y.S.\&author=Lloyd,+S.\&author=Tsallis,+C.\&publication_year=2002\&journal=Phys. +Rev.+Lett.\&volume=89\&pages=214101)]
68. Betzler, A.S.; Borges, E.P. Nonextensive distributions of asteroid rotation periods and diameters. Astron. Astrophys. 2012, 539, A158. [Google Scholar
Necessary
(https://scholar.google.com/scholar_lookup?
title=Nonextensive+distributions+of+asteroid+rotation+periods+and+diameters\&author
Pre\&\&enteŗ+A.S.\&author=Borges,+E.P.\&publication_year=2012\&journal=Astron.+A rophy s.\&volume=539\&pages=A158\&doi=10.1051/0004-6361/201117767)]
[CrossRef

69. Betzler, A.S.; Borges, E.P. Nonextensive statistical analysis of meteor showers and lunar Marksting. Mon. Not. R. Astron. Soc. 2015, 447, 765-771. [Google ~cholar (https://scholar.google.com/scholar_lookup?
title=Nonextensive+statistica!+ana!ysis+of+meteor+showers+and+lunar+flashes\&author $=$ Betzler,+A.S.\&author=Borges,+E.P.\&publication_year=2015\&journal=Mon.+Not.+R.+Ast ron.+Soc.\&volume=447\&pages=765\%E2\%80\%93771)]
70. Li, Y.; Li, N.; Tirnakli, U.; Li, B.; Tsallis, C. Thermal conductance of the coupled-rotator chain: Influence of temperature and size. EPL 2017, 117, 60004. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Thermal+conductance+of+the+coupledrotator+chain:+Influence+of+temperature+and+size\&author=Li,+Y.\&author=Li,+N.\&autho r=Tirnakli,+U.\&author=Li,+B.\&author=Tsallis,+C.\&publication_year=2017\&journal=EPL\& volume=117\&pages=60004)]
71. Nivanen, L.; Le Mehaute, A.; Wang, Q.A. Generalized algebra within a nonextensive statistics.

Rep. Math. Phys. 2003, 54, 437-444. [Google Scholar
(https://scholar.google.com/scholar_lookup?
title=Generalized+algebra+within+a+nonextensive+statistics\&author=Nivanen,+L.\&auth
or=Le+Mehaute,+A.\&author=Wang,+Q.A.\&publication_year=2003\&journal=Rep.+Math.+P LoadinghVes-fing
72. Borges, E.P. A possible deformed algebra and calculus inspired in nonextensive thermostatistics. Physica A 2004, 340, 95-101. [Google Scholar (https://scholar.google.com/scholar_lookup? title=A+possible+deformed+algebra+and+calculus+inspired+in+nonextensive+thermost atistics\&author=Borges,+E.P.\&publication_year=2004\&journal=Physica+A\&volume=340 \&pages=95\%E2\%80\%93101)] (https://www.cookiebot.com/en/what-is-behind-powered-by-cookiebot/).
73. Tempesta, P. Group entropies, correlation laws, and zeta functions. Phys. Rev. E 2011, 84, 021121. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Group+entropies,+correlation+laws,+and+zeta+functions\&author=Tempesta,+P.\&p ublication_year=2011\&journal=Phys.+Rev.+E\&volume=84\&pages=021121)]
74. Ruiz, G.; Tsallis, C. Reply to comment on "towards a large deviation theory for strongly correlated systems". Phys. Lett. A 2013, 377, 491-495. [Google Schollar (https://scholar.google.com/scholar_lookup? title=Reply+to+comment+on+\%E2\%80\%9Ctowards+a+large+deviation+theory+for+stron gly+correlated+systems\%E2\%80\%9D\&author=Ruiz,+G.\&author=Tsallis,+C.\&publication _year=2013\&journal=Phys.+Lett.+A\&volume=377\&pages=491\%E2\%80\%93495)]

75ecejぬæิधyui, M.; Tsallis, C. New representations of π and Dirac delta using the nonexte 've-statistical-mechanics q-exponential function. Math. Phys. 2010, 51, 063304. [Google Scholar (https://scholar.google.com/scholar_lookup?
Preferences
title=New+representations+of+\%CF\%80+and+Dirac+delta+using+the+nonextensive-+statistical-mechanics+q-
StatixpiهAential+function\&author=Jauregui,+M.\&author=Tsallis,+C.\&publication_ye 2010 \&journal=Math.+Phys.\&volume=51\&pages=063304)]

7®Mar§ietirog G.; Tsallis, C. q-Generalized representation of the d-dimensional Dirac del and q Fourier transform. Phys. Lett. A 2017, 381, 2583-2587. [Google Scholar (https://scholar.google.com/scholar_lookup?title=q-
Generalized+representation+of+the+d-dimensional+Dirac+delta+andstilow details > Fourier+transform\&author=Sicuro,+G.\&author=Tsallis,+C.\&publication_year=2017\&jour nal=Phys.+Lett.+A\&volume=381\&pages=2583\%E2\%80\%932587)]
77. Nobre, F.D.; Rego-Monteiro, M.A.; Tsallis, C. Nonlinear relativistic and quantum equations with a common type of solution. Phys. Rev. Lett. 2011, 106, 140601. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=Nonlinear+relativistic+and+quantum+equations+with+a+common+type+of+solutio n\&author=Nobre,+F.D.\&author=Rego-
Monteiro,+M.A.\&author=Tsallis,+C.\&publication_year=2011\&journal=Phys.+Rev.+Lett.\&v olume=106\&pages=140601)]

78．Costa Filho，R．N．；Almeida，M．P．；Farias，G．A．；Andrade，J．S．，Jr．Displacement operator for quantum systems with position－dependent mass．Phys．Rev．A 2011，84，050102（R）．［Google Scholar （https：／／scholar．google．com／scholar＿lookup？ title＝Displacement＋operator＋for＋quantum＋systems＋with＋position－ dependent＋mass\＆author＝Costa＋Filho，＋R．N．\＆author＝Almeida，＋M．P．\＆author＝Farias，＋G．

79．Mazharimousavi，S．H．Revisiting the displacement operator for quantum systems with position－ dependent mass．Phys．Rev．A 2010，85，034102．［Google Scholar （https：／／scholar．google．com／scholar＿lookup？
title＝Revisiting＋the＋displacement＋operator＋for＋quantum＋systems＋with＋position－ dependent＋mass\＆author＝Mazharimousavi，＋S．H．\＆publication＿year＝2010\＆journal＝Phys． ＋Rev．＋A\＆volume＝85\＆pages＝034102）］

80．Nobre，F．D．；Rego－Monteiro，M．A．；Tsallis，C．A generalized nonlinear Schroedinger equation： Classical field－theoretic approach．Europhys．Lett．2012，97，41001．［Google Scholar （https：／／scholar．google．com／scholar＿lookup？
title＝A＋generalized＋nonlinear＋Schroedinger＋equation：＋Classical＋field－
Necessary
theoretic＋approach\＆author＝Nobre，＋F．D．\＆author＝Rego－
Monteiro，＋M．A．\＆author＝Tsallis，＋C．\＆publication＿year＝2012\＆journal＝Europhys．＋Lett．\＆v
Préfuphreg7\＆pages＝41001）］
81．Rego－Monteiro，M．A．；Nobre，F．D．Nonlinear quantum equations：Classical field theory．J．Math． Statpestics 2013，54，103302．［Google Scholar（https：／／scholar．google．com／scholar＿okup？ title＝Nonlinear＋quantum＋equations：＋Classical＋field＋theory\＆author＝Rego－
Markettheiro，＋M．A．\＆author＝Nobre，＋F．D．\＆publication＿year＝2013\＆journal＝J．＋Math．＋${ }^{\prime}$＇ys．\＆v olume＝54\＆pages＝103302）］

82．Rego－Monteiro，M．A．；Nobre，F．D．Classical field theory for a non－Hermitian Schroedinger equation with position－dependent masses．Phys．Rev．A 2013，88，03218月о［P日e民AяScholar （https：／／scholar．google．com／scholar＿lookup？title＝Classical＋field＋theory＋for＋a＋non－ Hermitian＋Schroedinger＋equation＋with＋position－dependent＋masses\＆author＝Rego－ Monteiro，＋M．A．\＆author＝Nobre，＋F．D．\＆publication＿year＝2013\＆journal＝Phys．＋Rev．＋A\＆vol ume＝88\＆pages＝032105）］

83．Costa Filho，R．N．；Alencar，G．；Skagerstam，B．－S．；Andrade，J．S．，Jr．Morse potential derived from first principles．Europhys．Lett．2013，101，10009．［Google Scholar （https：／／scholar．google．com／scholar＿lookup？
title＝Morse＋potential＋derived＋from＋first＋principles\＆author＝Costa＋Filho，＋R．N．\＆author ＝Alencar，＋G．\＆author＝Skagerstam，＋B．－
S．\＆author＝Andrade，＋J．S．，＋Jr．\＆publication＿year＝2013\＆journal＝Europhys．＋Lett．\＆volume ＝101\＆pages＝10009）］
84. Toranzo, I.V.; Plastino, A.R.; Dehesa, J.S.; Plastino, A. Quasi-stationary states of the NRT nonlinear Schroedinger equation. Physica A 2013, 392, 3945-3951. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Quasi-
stationary+states+of+the+NRT+nonlinear+Schroedinger+equation\&author=Toranzo,+I.V. \&author=Plastino,+A.R.\&author=Dehesa,+J.S.\&author=Plastino,+A.\&publication_year=2
 is-behind-powered-by-cookiebot/).
85. Curilef, S.; Plastino, A.R.; Plastino, A. Tsallis' maximum entropy ansatz leading to exact analytical time dependent wave packet solutions of a nonlinear Schroedinger equation. Physica A 2013, 392, 2631-2642. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Tsallis\%E2\%80\%99+maximum+entropy+ansatz+leading+to+exact+analytical+time+ dependent+wave+packet+solutions+of+a+nonlinear+Schroedinger+equation\&author=G urilef,+S.\&author=Plastino,+A.R.\&author=Plastino,+A.\&publication_year=2013\&journa|= Physica+A\&volume=392\&pages=2631\%E2\%80\%932642)]
86. Plastino, A.R.; Tsallis, C. Nonlinear Schroedinger equation in the presence of uniform acceleration. J. Math. Phys. 2013, 54, 041505. [Google Scholar
(https://scholar.google.com/scholar_lookup?
Necessary
title $=$ Nonlinear+Schroedinger+equation+in+the+presence+of+uniform+accelerationaaut hor=Plastino,+A.R.\&author=Tsallis,+C.\&publication_year=2013\&journal=J.+Math.+Phys. Pret\&venase $=54 \&$ pages $=041505$)]
87. Plastino, A.R.; Souza, A.M.C.; Nobre, F.D.; Tsallis, C. Stationary and uniformly accelerated Statistiess in nonlinear quantum mechanics. Phys. Rev. A 2014, 90, 062134. [Google cholar (https://scholar.google.com/scholar_lookup?
 \&author=Plastino,+A.R.\&author=Souza,+A.M.C.\&author=Nobre,+F.D.\&author=Tsallis,+C. عpub!ication_year=2014\&journa!=Phys.+Rev.+ARvolume=9n\&.pages=062134)]
88. Pennini, F.; Plastino, A.R.; Plastino, A. Pilot wave approach to the NRT ng్hibpadetahreedinger equation. Physica A 2014, 403, 195-205. [Google Scholar
(https://scholar.google.com/scholar_lookup?
title=Pilot+wave+approach+to+the+NRT+nonlinear+Schroedinger+equation\&author=Pen nini,+F.\&author=Plastino,+A.R.\&author=Plastino,+A.\&publication_year=2014\&journal=P hysica+A\&volume=403\&pages=195\%E2\%80\%93205)]
89. Da Costa, B.G.; Borges, E.P. Generalized space and linear momentum operators in quantum mechanics. J. Math. Phys. 2014, 55, 062105. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Generalized+space+and+linear+momentum+operators+in+quantum+mechanics\&a uthor=Da+Costa,+B.G.\&author=Borges,+E.P.\&publication_year=2014\&journal=J.+Math.+ Phys.\&volume=55\&pages=062105)]
90. Nobre, F.D.; Rego-Monteiro, M.A. Non-Hermitian PT symmetric Hamiltonian with positiondependent masses: Associated Schroedinger equation and finite-norm solutions. Braz. J. Phys. 2015, 45, 79-88. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Non-Hermitian+PT+symmetric+Hamiltonian+with+position-dependent+masses:+Associated+Schroedinger+equation+and+finite-norm+solutions\&author=Nobre,+F.D.\&author=R\&bftps://www.cookiebot.com/en/what-
 $\%$ E2\% $\% 0 \% 9388$)]
91. Plastino, A.; Rocca, M.C. From the hypergeometric differential equation to a non-linear Schroedinger one. Phys. Lett. A 2015, 379, 2690-2693. [Google Scholar (https://scholar.google.com/scholar_lookup? title=From+the+hypergeometric+differential+equation+to+a+nonlinear+Schroedinger+one\&author=Plastino,+A.\&author=Rocca,+M.C.\&publication_year= 2015\&journal=Phys.+Lett.+A\&volume=379\&pages=2690\%E2\%80\%932693)]
92. Alves, L.G.A.; Ribeiro, H.V.; Santos, M.A.F.; Mendes, R.S.; Lenzi, E.K. Solutions for a qgeneralized Schroedinger equation of entangled interacting particles. Physica A 2015, 429, 35-44. [Google Scholar (https://scholar.google.com/scholar_looºup?

Necesssary title $=$ Solutions + for $+a+q-~$

generalized+Schroedinger+equation+of+entangled+interacting+particles\&author=Alves,
Preficr.en@e\&author=Ribeiro,+H.V.\&author=Santos,+M.A.F.\&author=Mendes,+R.S.\&a $10 r=$ L enzi,+E.K.\&publication_year=2015\&journal=Physica+A\&volume=429\&pages=35\%E2\%80
Stat 0 99344)]
93. Plastino, A.R.; Tsallis, C. Dissipative effects in nonlinear Klein-Gordon dynamics. EPL 2016, Marketing 50005. [Google Scholar (https://scholar.google.com/scholar_ ' ookup? title=Dissipative+effects+in+nonlinear+Klein\%E2\%80\%93Gordon+dynamics\&author=Pla
 es=50005)]

Show details >

94. Plastino, A.; Rocca, M.C. Hypergeometric connotations of quantum equations. Physica A 2016, 450, 435-443. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Hypergeometric+connotations+of+quantum+equations\&author=Plastino,+A.\&auth or=Rocca,+M.C.\&publication_year=2016\&journal=Physica+A\&volume=450\&pages=435\% E2\%80\%93443)]
95. Bountis, T.; Nobre, F.D. Travelling-wave and separated variable solutions of a nonlinear Schroedinger equation. J. Math. Phys. 2016, 57, 082106. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Travellingwave+and+separated+variable+solutions+of+a+nonlinear+Schroedinger+equation\&auth or=Bountis,+T.\&author=Nobre,+F.D.\&publication_year=2016\&journal=J.+Math.+Phys.\&v olume=57\&pages=082106)]
96. Nobre, F.D.; Plastino, A.R. A family of nonlinear Schroedinger equations admitting q-plane wave. Phys. Lett. A 2017, 381, 2457-2462. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=A+family+of+nonlinear+Schroedinger+equations+admitting+q-
plane+wave\&author=Nobre,+F.D.\&author=Plastino,+A.R.\&publication_year=2017\&journa I=Phys.+Lett.+A\&volume=381\&pages=2457\%E26/Abtefg is-behind-powered-by-cookiebot/)
97. Capurro, A.; Diambra, L.; Lorenzo, D.; Macadar, O.; Martin, M.T.; Mostaccio, C.; Plastino, A.; Rofman, E.; Torres, M.E.; Velluti, J. Tsallis entropy and cortical dynamics: The analysis of EEG signals. Physica A 1998, 257, 149-155. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Tsallis+entropy+and+cortical+dynamics:+The+analysis+of+EEG+signals\&author=C apurro,+A.\&author=Diambra,+L.\&author=Lorenzo,+D.\&author=Macadar,+O.\&author=Mar tin,+M.T.\&author=Mostaccio,+C.\&author=Plastino,+A.\&author=Rofman,+E.\&author=Torr es,+M.E.\&author=Velluti,+J.\&publication_year=1998\&journal=Physica+A\&volume=257\& pages=149\%E2\%80\%93155)]
98. Mohanalin, J.; Beenamol; Kalra, P.K.; Kumar, N. A novel automatic microcalcification detection technique using Tsallis entropy and a type II fuzzy index. Comput. Math. Appl. 2010, 60, 2126-
[Google Scholar
(https://scholar.google.com/scholar_loonup? title=A+novel+automatic+microcalcification+detection+technique+using+Tsallis+entrop Preferrances+type+Il+fuzzy+index\&author=Mohanalin,+J.\&author=Beenamol\&autho. Kalra, +P.K.\&author=Kumar,+N.\&publication_year=2010\&journal=Comput.+Math.+Appl.\&volum Stafistitespages=2426\%E2\%80\%932432)]
99. Soares, D.J.B.; Tsallis, C.; Mariz, A.M.; Silva, L.R. Preferential attachment growth model and Markentutensive statistical mechanics. EPL 2005, 70, 70-76. [Google ?cholar (https://scholar.google.com/scholar_lookup?
title=Preferentia!+attachment+growth+mode!+and+nonextensive+statistical+mechanics \&author=Soares,+D.J.B.\&author=Tsallis,+C.\&author=Mariz,+A.M.\&author=Silya,+L.R.\&p ublication_year=2005\&journal=EPL\&volume=70\&pages=70\%E2\%80\%9376)]
100. Thurner, S.; Tsallis, C. Nonextensive aspects of self-organized scale-free gas-like networks. Europhys. Lett. 2005, 72, 197-203. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Nonextensive+aspects+of+self-organized+scale-free+gas-
like+networks\&author=Thurner,+S.\&author=Tsallis,+C.\&publication_year=2005\&journal= Europhys.+Lett.\&volume=72\&pages=197\%E2\%80\%93203)]
101. Brito, S.G.A.; da Silva, L.R.; Tsallis, C. Role of dimensionality in complex networks. Nat. Sci. Rep. 2016, 6, 27992. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Role+of+dimensionality+in+complex+networks\&author=Brito,+S.G.A.\&author=da+ Silva,+L.R.\&author=Tsallis,+C.\&publication_year=2016\&journal=Nat.+Sci.+Rep.\&volume =6\&pages=27992)]
102. Borland, L. Closed form option pricing formulas based on a non-Gaussian stock price model with statistical feedback. Phys. Rev. Lett. 2002, 89, 098701. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=Closed+form+option+pricing+formulas+based+on+a+non-
Gaussian+stock+price+model+with+statistical+feedback\&author=Borland,+L.\&publicati on_year=2002\&journal=Phys.+Rev.+Lett.\&volunhlatyore/bwyeyrorgioppt.com/en/what-is-behind-powered-by-cookiebot/).
103. Tsallis, C.; Anteneodo, C.; Borland, L.; Osorio, R. Nonextensive statistical mechanics and economics. Physica A 2003, 324, 89-100. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=Nonextensive+statistical+mechanics+and+economics\&author=Tsallis,+C.\&author= Anteneodo,+C.\&author=Borland,+L.\&author=Osorio,+R.\&publication_year=2003\&jourriai =Physica+A\&volume=324\&pages=89\%E2\%80\%93100)]
104. Osorio, R.; Borland, L.; Tsallis, C. Distributions of high-frequency stock-market observables. In Nonextensive Entropy-Interdisciplinary Applications; Gell-Mann, M., Tsallis, C., Eds.; Oxford University Press: New York, NY, USA, 2004. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Distributions+of+high-frequency+stock-
Necessary
market+observables\&author=Osorio,+R.\&author=Borland,+L.\&author=Tsallis,+C.\&publi cation_year=2004)]
105. Borges, E.P. Empirical nonextensive laws for the county distribution of total persona, income and gross domestic product. Physica A 2004, 334, 255-266. [Google Scholar
Sta\#hstips://scholar.google.com/scholar_lookup?
title=Empirical+nonextensive+laws+for+the+county+distribution+of+total+personal+inc
Marketn ${ }^{+}$gnd+gross+domestic+product\&author=Borges,+E.P.\&publication_year=20r ${ }^{4}$ \&jour nal=Physica+A\&volume=334\&pages=255\%E2\%80\%93266)]
106. Ludescher, J.; Tsallis, C.; Bunde, A. Universal behaviour of inter-occurrence times between
 Scholar (https://scholar.google.com/scholar_lookup? title=Universal+behaviour+of+interoccurrence+times+between+losses+in+financial+markets:+An+analytical+description\&a uthor=Ludescher,+J.\&author=Tsallis,+C.\&author=Bunde,+A.\&publication_year=2011\&jo urnal=Europhys.+Lett.\&volume=95\&pages=68002)]
107. Ludescher, J.; Institut fur Theoretische Physik, Justus-Liebig-Universitat, Giessen, Germany; Tsallis, C.; Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil. Private Communications, 2011.
108. Queiros, S.M.D. On generalisations of the log-Normal distribution by means of a new product definition in the Kapteyn process. Physica A 2012, 391, 3594-3606. [Google Scholar (https://scholar.google.com/scholar_lookup?title=On+generalisations+of+the+logNormal+distribution+by+means+of+a+new+product+definition+in+the+Kapteyn+proces s\&author=Queiros,+S.M.D.\&publication_year=2012\&journal=Physica+A\&volume=391\&p ages=3594\%E2\%80\%933606)] (https://www.cookiebot.com/en/what-is-behind-powered-by-cookiebot/).
109. Bogachev, M.I.; Eichner, J.F.; Bunde, A. Effect of nonlinear correlations on the statistics of return intervals in multifractal data sets. Phys. Rev. Lett. 2007, 99, 240601. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=Effect+of+nonlinear+correlations+on+the+statistics+of+return+intervals+in+multifr actal+data+sets\&author=Bogachev,+M.I.\&author=Eichner,+J.F.\&author=Bunde,+A.\&puibi ication_year=2007\&journal=Phys.+Rev.+Lett.\&volume=99\&pages=240601)]
110. Ludescher, J.; Bunde, A. Universal behavior of the inter-occurrence times between losses in financial markets: Independence of the time resolution. Phys. Rev. 2014, 90, 062809. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Universal+behavior+of+the+inter-
occurrence+times+between+losses+in+financial+markets:+Independence+of+the+time+ Necessary
resolution\&author=Ludescher,+J.\&author=Bunde,+A.\&publication_year=2014\&jourıal= Phys.+Rev.\&volume=90\&pages=062809)]
Preferences. Perello, J.; Gutierrez-Roig, M.; Masoliver, J. Scaling properties and universality uf first-passage-time probabilities in financial markets. Phys. Rev. E 2011, 84, 066110. [Google

Sta太etiokar

(https://scholar.google.com/scholar_ okup?
title=Scaling+properties+and+universality+of+first-passage-
Marketty \quad timobabilities+in+financial+markets\&author=Perello,+J.\&author=Gutierrez-
Roig,+M.\&author=Masoliver,+J.\&publication_year=2011\&journal=Phys.+Rev.+E\&volume =84\&pages=06611n)]
112. Ruseckas, J.; Kaulakys, B.; Gontis, V. Herding model and 1/f noise. Esphowodetalps 68007. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Herding+model+and+1/f+noise\&author=Ruseckas,+J.\&author=Kaulakys,+B.\&autho $r=$ Gontis,+V.\&publication_year=2011\&journal=EPL\&volume=96\&pages=60007)]
113. Ruseckas, J.; Gontis, V.; Kaulakys, B. Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations. Adv. Complex Syst. 2012, 1250073. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Nonextensive+statistical+mechanics+distributions+and+dynamics+of+financial+ob servables+from+the+nonlinear+stochastic+differential+equations\&author=Ruseckas,+J. \&author=Gontis,+V.\&author=Kaulakys,+B.\&publication_year=2012\&journal=Adv.+Compl ex+Syst.\&volume=15\&pages=1250073)]
114. Gontis, V.; Kononovicius, A. A consentaneous agent based and stochastic model of the financial markets. PLoS ONE 2014, 9, e102201. [Google Scholar (https://scholar.google.com/scholar_lookup?
title=A+consentaneous+agent+based+and+stochastic+model+of+the+financial+markets \&author=Gontis,+V.\&author=Kononovicius,+A.\&publication_year=2014\&journal=PLoS+ ONE\&volume=9\&pages=e102201)] (https://www.cookiebot.com/en/what-is-behind-powered-by-cookiebot/). 115. Biondo, A.E.; Pluchino, A.; Rapisarda, A. Modeling financial markets by self-organized criticality. Phys. Rev. E 2015, 92, 042814. [Google Scholar (https://scholar.google.com/scholar_lookup?title=Modeling+financial+markets+by+selforganized+criticality\&author=Biondo,+A.E.\&author=Pluchino,+A.\&author=Rapisarda,+A. \&publication_year=2015\&journal=Phys.+Rev.+E\&volume=92\&pages=042814)]
416. Biondo, A.E.; Pluchino, A.; Rapisarda, A. Order book, financial markets, and self-organized criticality. Chaos Solitons Fractals 2016, 88, 196-208. [Google Schollar (https://scholar.google.com/scholar_lookup?
title=Order+book,+financial+markets,+and+self-
organized+criticality\&author=Biondo,+A.E.\&author=Pluchino,+A.\&author=Rapisarda,+A. \&publication_year=2016\&journal=Chaos+Solitons+Fractals\&volume=88\&pages=196\%E2 Necessary
$\% 80 \% 93208)]$
117. Biondo, A.E.; Pluchino, A.; Rapisarda, A. A multilayer approach for price dynamics in financial Preferences
markets. Eur. Phys. J. Spec. Top. 2017, 226, 477-488. [Google ucholar (https://scholar.google.com/scholar_lookup?
StatitticA+multilayer+approach+for+price+dynamics+in+financial+markets\&authol iondo ,+A.E.\&author=Pluchino,+A.\&author=Rapisarda,+A.\&publication_year=2017\&journal=Eu Marketings.+J.+Spec.+Top.\&volume=226\&pages=477\%E2\%80\%93488)]
118. Ruiz, G.; Fernandez, A. Evidence for criticality in financial data. arXiv, 2017; arXiv:1702.06191. [Google Scholar
(https://scholar.google.com/scholar_lookup? title=Evidence+for+criticality+in+financial+data\&author=Ruiz,+G.\&auth\&wन耳ergasdez,+A .\&publication_year=2017)]
119. Tsallis, C.; Gell-Mann, M.; Sato, Y. Asymptotically scale-invariant occupancy of phase space makes the entropy S_{q} extensive. Proc. Natl. Acad. Sci. USA 2005, 102, 15377-15382. [Google

Scholar
(https://scholar.google.com/scholar_lookup? title=Asymptotically+scale-
invariant+occupancy+of+phase+space+makes+the+entropy+Sq+extensive\&author=Tsall is,+C.\&author=Gell-
Mann,+M.\&author=Sato,+Y.\&publication_year=2005\&journal=Proc.+Natl.+Acad.+Sci.+US A\&volume=102\&pages=15377\%E2\%80\%9315382)]
120. Tsallis, C. Generalization of the possible algebraic basis of q-triplets. Eur. Phys. J. Spec. Top. 2017, 226, 455-466. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Generalization+of+the+possible+algebraic+basis+of+qtriplets\&author=Tsallis,+C.\&publication_year=2017\&journal=Eur.+Phys.+J.+Spec.+Top.\& volume=226\&pages=455\%E2\%80\%93466)]
 Proceedings of the 31st International Colloquium on Group Theoretical Methods in Physics, Rio de Janeiro, Brazil, 20-24 July 2016. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Statistical+mechanics+for+complex+systems:+On+the+structure+of+qtriplets\&conference=Proceedings+of+the+31st+International+Colloquium+on+Group+Th eoretical+Methods+in+Physics\&author=Tsallis,+C.\&publication_year=2016)]
122. Tsallis, C. Dynamical scenario for nonextensive statistical mechanics. Physica A 2004, 340, 110. [Google Scholar (https://scholar.google.com/scholar_lookup? title=Dynamical+scenario+for+nonextensive+statistical+mechanics\&author=Tsallis,+C.\& publication_year=2004\&journal=Physica+A\&volume=340\&pages=1\%E2\%80\%9310\&doi= 10.1016/j.physa.2004.03.072)] [CrossRef (https://dx.doi.org/10.1016/j.physa.2004.03.n72)] Necessary
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open accern article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (htt p://creativecommons.org/licenses/by/4.0/ (http://creativecommons.org/licenses/by/4.0/)). Statistics

Share and Cite

∇Marketing
(mailto:?\&subject=From\%20MDPI\%3A\%20\%22Economics\%20and\%20Finance\%3A\%20qStatistical\%20Stylized\%20Features\%20Galore"Rbody=https://www.mdpi.com/220922\%3A\%0A \%0AEconomics\%20and\%20Finance\%3A\%20q-
Statistical\%20Stylized\%20Features\%20Galore\%0A\%0AAbstract\%3A\%20The\%20 details shann\%E 2\%80\%93Gibbs\%20\%28BG\%29\%20entropy\%20and\%20its\%20associated\%20statistical\%20me chanics\%20were\%20generalized\%2C\%20three\%20decades\%20ago\%2C\%20on\%20the\%20basi s\%20of\%20the\%20nonadditive\%20entropy\%20\%20\%20\%20\%20S\%20q\%20\%20\%20\%20\%20\%2 8\%20\%20\%20\%20q\%20\%E2\%88\%88\%20R\%20\%20\%20\%20\%29\%2C\%20which\%20recovers\%2 Othe\%20BG\%20entropy\%20in\%20the\%20\%20\%20\%20\%20q\%20\%E2\%86\%92\%201\%20\%20\%20 \%20\%20limit.\%20The\%20optimization\%20of\%20\%20\%20\%20\%20S\%20q\%20\%20\%20\%20\%20u nder\%20appropriate\%20simple\%20constraints\%20straightforwardly\%20yields\%20the\%20so-called\%20q-exponential\%20and\%20q-
Gaussian\%20distributions\%2C\%20respectively\%20generalizing\%20the\%20exponential\%20an d\%20Gaussian\%20ones\%2C\%2Orecovered\%20for\%20\%20\%20\%20\%20q\%20\%3D\%201\%20\%2 0\%20\%20.\%20These\%20generalized\%20functions\%20ubiquitously\%20emerge\%20in\%20comp lex\%20systems\%2C\%20especially\%20as\%20economic\%20and\%20financial\%20stylized\%20fe atures.\%20These\%20include\%20price\%20returns\%20and\%20volumes\%20distributions\%2C\%2

Ointer-

occurrence\%20times\%2C\%20characterization\%20of\%20wealth\%20distributions\%20and\%20as sociated\%20inequalities\%2C\%20among\%20others.\%20Here\%2C\%20we\%20briefly\%20review \%20the\%20basic\%20concepts \%20of\%20this\%20q-
statistical\%20generalization\%20and\%20focus\%20on\%20its\%20rapidly\%20growing\%20applica tions\%20in\%20economics\%20and\%20finance.) (hthtt? fitlwifweconkielonttheeten/what-text=Economics+and+Finance\%3A+q-is-behind-powered-by-cookiebot/).

Statistical+Stylized+Features+Galore\&hashtags=mdpientropy\&url=https\%3A\%2F\%2Fwww.md pi.com\%2F220922\&via=Entropy_MDPI) in (http://www.linkedin.com/shareArticle? mini=true\&url=https\%3A\%2F\%2Fwww.mdpi.com\%2F220922\&title=Economics\%20and\%20Fina nce\%3A\%20q-
Statistical\%20Stylized\%20Features\%20Galore\%26source\%3Dhttps\%3A\%2F\%2Fwww.mdpi.cq m\%26summary\%3DThe\%20Boltzmann\%E2\%80\%93Gibbs\%20\%28BG\%29\%20entropy\%20and \%20its\%20associated\%20statistical\%20mechanics\%20were\%20generalized\%2C\%20three\%20 decades\%20ago\%2C\%20on\%20the\%20basis\%20of\%20the\%20nonadditive\%20entropy\%20\%20 \%20\%20\%20S\%20q\%20\%20\%20\%20\%20\%28\%20\%20\%20\%20q\%20\%E2\%88\%88\%20R\%20\%20 \%20\%20\%29\%2C\%20which\%20recovers\%20the\%20BG\%20entropy\%20in\%20the\%20\%20\%20

(https://www.facebook.com/sharer.php?u=https://www.mdpi.com/220922)
(http://www.reddit.com/submit?url=https://www.mdpi.com/220922)
(http://www.mendeley.com/import/?url=https://www.mdpi.com/220922)
Statistics
MDPI and ACS Style
Tsallis, C. Economics and Finance: q-Statistical Stylized Features Galore. Entropy 2017, 19, 457. https./ddot.org/10.3390/e19090457

AMA Style

Tsallis C. Economics and Finance: q-Statistical Stylized Features Galore. Entropy show details 19 (9): 457. https://doi.org/10.3390/e19090457

Chicago/Turabian Style

Tsallis, Constantino. 2017. "Economics and Finance: q-Statistical Stylized Features Galore" Entropy 19, no. 9: 457. https://doi.org/10.3390/e19090457

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here (https://www.mdpi.com/about/announcements/784).

Article Metrics

Citations
ads
Crossref

Web of	Scopus	Google Scholar

Article access statistics
(https://www.cookfebot.com/en/what-is-behind-powered-by-cookiebot/).

- Article Views

Foprifererpmeffation on the journal statistics, click here (journal/entropy/stats).
Multiple requests from the same IP address are counted as one view.
Statistics

Entropy_(journal/entropy), EISSN 1099-4300, Published by MDPI

Marketing

RSS ((rssijournal/entropy) Content Alert (journal/entropy/toc-alert)

Further Information
Article Processing Charges (lapc)
Pay an Invoice (/about/payment)
Open Access Policy_(lopenaccess)
Contact MDPI (/about/contact)
Jobs at MDPI (https://careers.mdpi.com)

Guidelines

For Authors (/authors)

For Reviewers (/reviewers)

For Editors (/editors)
For Librarians (/librarians)
For Publishers (lpublishing_services)

For Societies (/societies) MBPCBititetivesce Organizers (/conference_organizers)
Sciforum (https://sciforum.net)
MDPI Books (https://www.mdpi.com/books)
Preprints.org_(https://www.preprints.org)
Scilit (https://www.scilit.net)
SciProfiles (https://sciprofiles.com?
utm_source=mpdi.com\&utm_medium=bottom_menu\&utm_campaign=initiative).
Encyclopedia (https://encyclopedia.pub)
JAMS (https://jams.pub)
Proceedings Series (labout/proceedings)
4
Follow MDPI
Linkedln (https://www.linkedin.com/company/mdpi)
Facebook (https://www.facebook.com/MDPIOpenAccessPublishing)
Twitter (https://twitter.com/MDPIOpenAccess)

Necessary

Preferences

Subscribe to receive issue release nostifiepticos and newsletters from
MDPI journals

Malafiketinng

Enter your email address.

Subscribe
© 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated
Disclaimer Terms and Conditions (labout/terms-and-conditions) Privacy Policy_(/about/privacy.)

