

'Climate value at risk' of global financial assets

[Simon Dietz](#) ^{1,2}, [Alex Bowen](#)¹, [Charlie Dixon](#)² & [Philip Gradwell](#)²

[Nature Climate Change](#) **6**, 676–679 (2016)

17k Accesses | **566** Citations | **652** Altmetric | [Metrics](#)

Subjects [Environmental economics](#)

• [Governance](#)

 This article has been [updated](#)

Abstract

Investors and financial regulators are increasingly aware of climate-change risks. So far, most of the attention has fallen on whether controls on carbon emissions will strand the assets of fossil-fuel companies^{1,2}. However, it is no less important to ask, what might be the impact of climate change itself on asset values? Here we show how a leading integrated assessment model can be used to estimate the impact of twenty-first-century climate change on the present market value of global financial assets. We find that the expected 'climate value at risk' (climate VaR) of global financial assets today is 1.8% along a business-as-usual emissions path. Taking a representative estimate of global financial assets, this amounts to US\$2.5 trillion. However, much of the risk is in the tail. For example, the 99th percentile climate VaR is 16.9%, or US\$24.2 trillion. These estimates would constitute a substantial write-down in the fundamental value of financial assets. Cutting emissions to limit warming to no more than 2 °C reduces the climate VaR by an expected 0.6 percentage points, and the 99th percentile reduction is 7.7 percentage points. Including mitigation costs, the present value of global financial assets is an expected 0.2% higher when warming is limited to no more than 2 °C, compared with business as usual. The 99th percentile is 9.1% higher. Limiting warming to no more than 2 °C makes financial sense to risk-neutral investors—and even more so to the risk averse.

Access options

 Access through your institution

Buy this article

- Purchase on SpringerLink
- Instant access to the full article PDF.

39,95 €

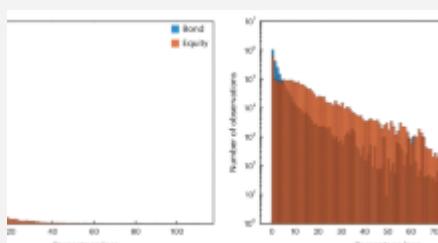
[Buy Now](#)

Subscribe to this journal

Receive 12 print issues and online access

269,00 € per year

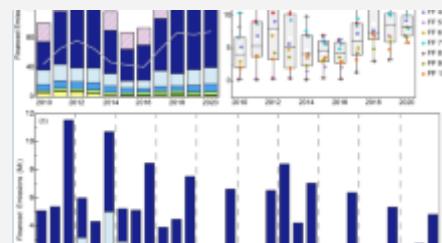
only 22,42 € per issue


[Learn more](#)

Prices may be subject to local taxes which are calculated during checkout

Additional access options:

- [Log in](#)
- [Learn about institutional subscriptions](#)
- [Read our FAQs](#)
- [Contact customer support](#)


Similar content being viewed by others

[Mapping global financial risks under climate change](#)

[Enterprise's strategies to improve financial capital under a climate change scenario - evidence of th...](#)

[Carbon footprints of the equity portfolios of Chinese fund firms](#)

Article | Open access

Article | Open access

Change history

13 April 2016 In the version of this Letter originally published, a reference was mistakenly omitted. The new reference 15 – *The Cost of Inaction: Recognising the Value at Risk from Climate Change* (Economist Intelligence Unit, 2015) – is now cited in the sixth paragraph and subsequent references have been renumbered in all versions of the Letter.

References

- 1** McGlade, C. & Ekins, P. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C. *Nature* **517**, 187–190 (2015).
- 2** Carbon Tracker & Grantham Research Institute on Climate Change and the Environment *Unburnable Carbon 2013: Wasted Capital and Stranded Assets* (Carbon Tracker, 2013).
- 3** Arent, D. J. et al. in *Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects* (eds Field, C. B. et al.) (Cambridge Univ. Press, 2014).
- 4** Stern, N. *The Economics of Climate Change: The Stern Review* (Cambridge Univ. Press, 2007).
- 5** Weitzman, M. L. GHG targets as insurance against catastrophic climate damages. *J. Pub. Econ. Theory* **14**, 221–244 (2012).
- 6** Burke, M. B., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. *Nature* **527**, 235–239 (2015).
- 7** IPCC *Managing the Risks of Extreme Events and Disasters to Advance Climate*

8 Stern, N. The structure of economic modeling of the potential impacts of climate change: grafting gross underestimation of risk onto already narrow science models. *J. Econ. Lit.* **51**, 838–859 (2013).

9 Graff Zivin, J. & Neidell, M. Temperature and the allocation of time: implications for climate change. *J. Labor Econ.* **32**, 1–26 (2014).

10 *Climate Change Scenarios: Implications for Strategic Asset Allocation* (Mercer, 2011).

11 *Open letter to Finance Ministers in the Group of Seven (G-7)* (Institutional Investors Group on Climate Change, 2015).

12 Carney, M. *Breaking the Tragedy of the Horizon: Climate Change and Financial Stability* (Bank of England, 2015).

13 *Integrating Risks into the Financial System: The 1-in-100 Initiative Action Statement* (United Nations, 2014).

14 Campbell, J. Y. & Viceira, L. M. *Strategic Asset Allocation: Portfolio Choice for Long-Term Investors* (Oxford Univ. Press, 2014).

15 *The Cost of Inaction: Recognising the Value at Risk from Climate Change* (Economist Intelligence Unit, 2015).

16 Covington, H. & Thamotheram, R. *The Case for Forceful Stewardship Part 1: The Financial Risk from Global Warming* (2015).

17 Kaldor, N. A model of economic growth. *Econ. J.* **67**, 591–624 (1957).

18 Gollin, D. Getting Income Shares Right. *J. Polit. Econ.* **110**, 458–474 (2002).

19 Modigliani, F. & Miller, M. The cost of capital, corporation finance and the theory of investment. *Am. Econ. Rev.* **48**, 261–297 (1958).

20 Modigliani, F. & Miller, M. Corporate income taxes and the cost of capital: a correction. *Am. Econ. Rev.* **53**, 433–443 (1963).

21 Arrow, K. J. et al. How should benefits and costs be discounted in an intergenerational context? *Rev. Environ. Econ. Policy* **8**, 145–163 (2014).

22 Nordhaus, W. D. *A Question of Balance: Weighing the Options on Global Warming Policies* (Yale Univ. Press, 2008).

23 Dietz, S. & Stern, N. Endogenous growth, convexity of damages and climate risk: how Nordhaus' framework supports deep cuts in carbon emissions. *Econ. J.* **125**, 574–602 (2015).

24 Moyer, E., Woolley, M., Glotter, M. & Weisbach, D. A. Climate impacts on economic growth as drivers of uncertainty in the social cost of carbon. *J. Legal Stud.* **43**, 401–425 (2014).

25 Anderson, B., Borgonovo, E., Galeotti, M. & Roson, R. Uncertainty in climate change modeling: can global sensitivity analysis be of help? *Risk Anal.* **34**, 271–293 (2014).

26 Dietz, S. & Asheim, G. B. Climate policy under sustainable discounted utilitarianism. *J. Environ. Econ. Manage.* **63**, 321–335 (2012).

28 *Fossil Fuel Divestment: A US\$5 trillion Challenge* (Bloomberg New Energy Finance, 2014); <http://about.bnef.com/content/uploads/sites/4/2014/08/BNEF>

29 Shiller, R. J. Do stock prices move too much to be justified by subsequent changes in dividends? *Am. Econ. Rev.* **71**, 421–436 (1981).

30 CISL *Unhedgeable Risk: How Climate Change Sentiment Impacts Investment* (Cambridge Institute for Sustainability Leadership, 2015).

31 Dimson, E., Marsh, P. & Staunton, M. *Equity Premiums Around the World* (CFA Institute, 2011).

32 Maddison, A. *The World Economy: A Millennial Perspective* (Development Centre of the OECD, 2006).

33 *Global Financial Stability Report 2011* (IMF, 2011).

34 Nordhaus, W. D. *RICE-2010 and DICE-2010 Models* (2012);
<http://www.econ.yale.edu/~nordhaus/homepage/RICEmodels.htm>

35 Nordhaus, W. D. & Boyer, J. *Warming the World: Economic Models of Global Warming* (MIT, 2000).

36 Dietz, S., Gollier, C. & Kessler, L. *The Climate Beta* (Centre for Climate Change Economics and Policy Working Paper 215 and Grantham Research Institute on Climate Change and the Environment, 2015).

37 *IPCC Climate Change 2013: The Physical Science Basis* (IPCC, 2013).

Acknowledgements

S.D. and A.B. would like to acknowledge the support of the UK's Economic and Social Research Council (ESRC), and the Grantham Foundation for the Protection of the Environment. We are grateful for the invaluable advice of H. Covington and S. Waygood.

Author information

Authors and Affiliations

London School of Economics and Political Science, ESRC Centre for Climate Change Economics and Policy and Grantham Research Institute on Climate Change and the Environment, Houghton Street, London WC2A 2AE, UK
Simon Dietz & Alex Bowen

Vivid Economics Ltd, Evergreen House North, 160 Euston Road, Grafton Place, London NW1 2DX, UK
Simon Dietz, Charlie Dixon & Philip Gradwell

Contributions

S.D. led the project, from research design through modelling to writing the manuscript. A.B. helped design the research and draft the manuscript. P.G. helped design the research and run the model. C.D. also helped run the model.

Corresponding author

Correspondence to [Simon Dietz](#).

Ethics declarations

Competing interests

No competing financial interests have affected the conduct or results of this research. However, for the sake of transparency, the authors would like to make clear that they were employed by Vivid Economics Ltd during the production of this research. Vivid Economics Ltd is a London-based economics consultancy. Neither the authors nor the company stands to profit directly from this research.

Supplementary information

Supplementary Information

Supplementary Information (PDF 519 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dietz, S., Bowen, A., Dixon, C. *et al.* 'Climate value at risk' of global financial assets. *Nature Clim Change* **6**, 676–679 (2016). <https://doi.org/10.1038/nclimate2972>

Received

27 October 2015

Accepted

26 February 2016

Published

04 April 2016

Issue date

July 2016

DOI

<https://doi.org/10.1038/nclimate2972>

This article is cited by

Embodied CO₂ emissions of equity_portfolios for Chinese asset managers

Jinglei Wang, Zengkai Zhang ... Dabo Guan

Scientific Data (2024)

Navigating sustainable horizons: exploring the dynamics of financial stability, green growth, renewable energy, technological innovation, financial inclusion, and soft infrastructure in shaping sustainable development

Muhammad Nauman, Rehana Naheed & Junaid Khan

Environmental Science and Pollution Research (2024)

[A machine learning approach to rapidly project climate responses under a multitude of net-zero emission pathways](#)

Vassili Kitsios, Terence John O'Kane & David Newth

Communications Earth & Environment (2023)

[Green preferences](#)

Francesco Busato, Bruno Chiarini ... Maria Ferrara

Environment, Development and Sustainability (2023)

[Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways](#)

Ajay Gambhir, Mel George ... Seth Monteith

Nature Climate Change (2022)

Nature Climate Change (Nat. Clim. Chang.) | ISSN 1758-6798 (online) | ISSN 1758-678X (print)