

A Simplified Utility Framework For the Analysis of Financial Risk

John M. Cozzolino

Paper presented at the SPE Economics and Evaluation Symposium, Dallas, Texas, February 1977.

Paper Number: SPE-6359-MS

<https://doi.org/10.2118/6359-MS>

Published: February 21 1977

[Cite](#)

[Share](#)

[Get Permissions](#)

Society of Petroleum Engineers 6200 North Central Expressway Dallas, Texas 75206

THIS PAPER IS SUBJECT TO CORRECTION

American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc.

Abstract

The von Neumann-Morgenstern utility (risk-preference) theory is the most consistent and comprehensive theory of risk. Yet it has been used very little for representation of financial risk problems. Instead, special purpose methods of risk representation have been used. The goal of this paper is to propose a simplified utility framework. Three different possible axioms are considered. They all imply that the utility function must be of the exponential form. It appears that this simplified utility framework will be more fruitful than other special purpose methods for risk representation. A two-stage method of risk analysis is recommended and an example from oil exploration is shown.

Introduction

An axiomatic, consistent representation of risk can lead to simple models that convey much insight. Such a foundation is the von Neumann-Morgenstern theory of utility (risk preference). This concept of risk is relative to preference. This concept of risk is relative to an individual decision maker. It is assumed that the individual's fundamental measure of wellbeing is his quantity of wealth. Thus, the argument of an individual's utility function is his wealth. This assumption commonly is made in treating financial problems.

The goal of this paper is to develop a simplified utility framework that trades off some of its generality to gain ease of solution for practical risk problems. The method is to assemble many well known facts into a comprehensive picture of the properties of exponential utility functions.

Following Pratt's notation, let x represent total wealth at the initial time. Let $U(x)$ represent the individual's utility function for wealth at the end of the period. It is assumed that $U(x)$ is continuous and possesses second derivatives. Let z represent the profit or net return (increment to wealth) during the period. Then the terminal wealth will be $x + z$. Then the terminal wealth will be $x + z$ at the end of the period. The profit is a random variable at the initial time. It has a probability distribution with

[Skip to Main Content](#)

density function probability distribution with density function $f(z)$. This probability distribution may be discrete or continuous. However, without loss of generality, the notation of continuous random variables will be used.

Keywords: strategic planning and management, Upstream Oil & Gas, financial risk, decision support system, Game Theory, utility theory, Artificial Intelligence, portfolio, utility framework, risk management

Subjects: Risk Management and Decision-Making, Strategic Planning and Management, Exploration and appraisal strategies

This content is only available via PDF.

1977. Society of Petroleum Engineers

You can access this article if you purchase or spend a download.

Sign in

Don't already have an account? [Register](#)

Personal Account

Email Address

Password

SIGN IN

[SIGN IN](#)
[Skip to Main Content](#)
[Reset password](#)
[Register](#)

Pay-Per-View Access \$29.50

 BUY THIS ARTICLE

Annual Article Package - 25

\$250

 BUY DOWNLOADS

Annual Article Package - 50

\$425

 BUY DOWNLOADS

[View Your Downloads](#)

SPE members can access this article
for \$10 USD. [Learn how to connect
your SPE membership.](#)

View Metrics

Email Alerts

[Proceedings Paper Activity Alert](#)

[Latest Conference Proceeding Alert](#)

Suggested Reading

Study of the Optimum Level of Financial Participation in Risky Projects for Oil and Gas Exploration and Production

19OTCB

Uncertainty Assessment of Well Placement Optimization

01ATCE

Modeling the Economic Impact of Individual and Corporate Risk Attitude

08ATCE

Value of Information and Risk Preference in Oil and Gas Exploration and Production Projects

17CTCE

A Decision Criterion for Drilling Investments

68FM

SPE Hydrocarbon Economics and Evaluation Symposium

Explore

Journals

Conferences

eBooks

Publishers

Connect

About Us

Contact Us

Content Alerts

[Skip to Main Content](#)
SPE Member Pricing

Resources

[Terms of Use](#)

[Privacy](#)

[Help](#)

[KBART](#)

Engage

[Subscribe](#)

[Advertise](#)
