Applied Economics >
 Volume 36, 2004 - Issue 8

55460

0

Views CrossRef citations to date Altmetric
Original Articles
A money demand system for euro area M3 Claus Brand \& Nuno Cassola
Pages 817-838 | Published online: 02 Feb 2007
SS Cite this article $\boldsymbol{\sim}$ https://doi.org/10.1080/0003684042000229541

Reprints \& Permissions

Read this article

Abstract

In order to assess the importance of monetary and financial developments for key macroeconomic variables in the euro area a money demand system for M3 is estimated adopting a structural cointegrating VAR approach. While maintaining a good statistical representation of the data, long-run relationships are based on economic theory. By using generalized response profiles the dynamics of the money demand system is investigated without any further identifying assumptions. Error bounds of the profiles are derived using bootstrap simulations.

Nicoletti－Altimari，Huw Pill，Mette Felding Schrøder，Juan－Luis Vega，Javier Valles and Jürgen Wolters．The views expressed in this paper represent exclusively the opinion of the authors and do not necessarily reflect those of the European Central Bank．The usual disclaimer applies．

Notes

 authors upon request． Hendry（1997））． information criterion．from you，please see our Privacy Policy．

[^0]（therese
\square
${ }^{7}$ Note that the second cointearatina vector is normalized in $\pi+$ and not in I_{+}as in
Equation About Cookies On This Site
Equation About Cookies On This Site

We and our partners use cookies to enhance your website experience，learn how our site is used，offer personalised features，measure the effectiveness of our services，and tailor content and ads to your interests while you navigate on the web or interact with us across devices．You can choose to accept all of these cookies or only essential cookies．To learn more or manage your preferences，click
"Settings". For further information about the data we colle ＂Settings＂．For further information about the data we collect ， L
號
號
 ，

$$
0
$$號

\square
\qquad $+$

$$
\lambda
$$

 \rightarrow \checkmark

 ．

$$
1
$$

${ }^{9}$ According to tests of overidentifying restrictions the parsimonious representation is not rejected by the data.
${ }^{10}$ The operator $\operatorname{diag}^{-1}\left(\beta^{\prime} \Sigma \beta\right)$ is writing the diagonal elements of $\left(\beta^{\prime} \Sigma \beta\right)$ into a diagonal matrix of the same dimension and $(\cdot)^{-1 / 2}$ refers to an element-wise operations.

Related research ©
People also read
Recommended articles
Cited by 60

About Cookies On This Site
We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click Settings "Settings". For further information about the data we collect from you, please see our Privacy Policy

Information for

Authors

R\&D professionals
Editors
Librarians
Societies

Opportunities

Reprints and e-prints
Advertising solutions
Accelerated publication
Corporate access solutions

Open access
Overview
Open journals
Open Select
Dove Medical Press
F1000Research
Help and information
Help and contact
Newsroom
All journals
Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up
f x in
(ivis)

Taylor \& Francis Group
an informa business

About Cookies On This Site

Accept All

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click

[^0]: －

