

International Journal of Production Research >

Volume 47, 2009 - Issue 20

946 | 36
Views | CrossRef citations to date | Altmetric

Original Articles

Hierarchical production planning and scheduling in make-to-order environments: reaching short and reliable delivery dates

M. Ebadian, M. Rabbani, S.A. Torabi & F. Jolai

Pages 5761-5789 | Received 11 Apr 2007, Accepted 28 Nov 2007, Published online: 24 Jul 2009

Cite this article <https://doi.org/10.1080/00207540802010799>

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

Abstract

This study proposes a novel hierarchical production planning (HPP) structure for make-to-order (MTO) companies. The proposed HPP structure contains three decision making levels: (1) the order entry level, (2) the order release level and (3) the order sequencing/dispatching level. The objective is to manage the delivery dates of arriving orders in order to reach short and reliable delivery dates using appropriate decision making techniques at each level. At the first level, the main decision concerns the acceptance or rejection of new arriving orders subject to some relevant limitations (e.g. capacity constraint). At this level, an extended version of our previously proposed model (Ebadian, M., et al., 2007. A new decision making structure for the order entry stage in make-to-order environments. International Journal of Production Economics, 111, 351-367.) is applied. Besides rejecting some of the low priority orders,

determination of delivery dates and prices for the non-rejected orders constitute the other outputs of this level. The second level is related to releasing the accepted orders to the shop floor. The decision making problems at this level include which orders and when they can be released. We develop a new order release method which improves the delivery date performance through generating a smoothed production schedule. Finally, at the third level, a modified dispatching rule is proposed to sequence the existing orders at each workstation so that the previously agreed delivery dates can be met. The proposed models at the second and third levels are validated through a number of numerical experiments conducted by simulation studies and the corresponding results are discussed in details.

Keywords:

make-to-order

hierarchical production planning and scheduling

delivery date management

production smoothing

simulation studies

Related Research Data

[Expert systems for planning and scheduling manufacturing systems](#)

Source: European Journal of Operational Research

[The performance of workload control concepts in job shops: Improving the release method](#)

Source: International Journal of Production Economics

[An order release mechanism for a flexible flow system](#)

Source: International Journal of Production Research

[A new decision-making structure for the order entry stage in make-to-order environments](#)

Source: International Journal of Production Economics

[The effects of input control in a simple scheduling model](#)

Source: Journal of Operations Management

[Order review and release strategies in a job shop environment: A review and a classification](#)

Source: International Journal of Production Research

People also read

Recommended articles

Cited by
36

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

 Taylor and Francis Group

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG