



International Journal of Production Research >

Volume 52, 2014 - Issue 2

1,349 87

Views

0  
CrossRef citations to date

Altmetric

Articles

# Reduction of power consumption and carbon footprints by applying multi-objective optimisation via genetic algorithms

Cheng-Hsiang Liu & Ding-Hsiang Huang

Pages 337-352 | Received 24 May 2012, Accepted 26 Jun 2013, Published online: 12 Aug 2013

Cite this article <https://doi.org/10.1080/00207543.2013.825740>

Check for updates



Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

## Abstract

Firms heavily emphasise reducing carbon footprint, an area warranting further improvement. This study examines carbon footprint within the context of production scheduling. Two multi-objective scheduling problems involving economic- and environmental-related criteria are studied: (1) a batch-processing machine scheduling problem to minimise the total weighted tardiness and carbon footprint simultaneously; (2) a triple-criteria scheduling problem involving of a hybrid flow shop consisting of a batch-processing machine followed by two parallel-processing machines, in which the shop attempts to minimise the total weighted tardiness, carbon footprint and peak power. Since the above problems are treated as a true multi-objective optimisation problem, decision-makers should select a solution among the trade-off solutions provided in the Pareto-optimal set. Therefore, the non-dominated sorting-based genetic

algorithm II (NSGA-II) is implemented, which identifies the set of approximate efficient schedules to both multi-objective scheduling problems. Moreover, an adaptive multi-objective genetic algorithm (AMGA) is developed to generate the reference Pareto front, which validates the results that are obtained using NSGA-II. Results of this study demonstrate both the effectiveness of AMGA in converging to the true Pareto-optimal set and the efficiency of NSGA-II.

Keywords:

scheduling

carbon footprint

total weighted tardiness

multi-objective genetic algorithms

#### Related Research Data

[Metaheuristic multiobjective optimisation approach for the scheduling of multiproduct batch chemical plants](#)

Source: [Journal of Cleaner Production](#)

[A framework to minimise total energy consumption and total tardiness on a single machine](#)

Source: [International Journal of Sustainable Engineering](#)

[Focusing in by-product recovery and waste minimization in batch production scheduling](#)

Source: [Computers & Chemical Engineering](#)

[Environmentally benign manufacturing: Observations from Japan, Europe and the United States](#)

Source: [Journal of Cleaner Production](#)

[An efficient constraint handling method for genetic algorithms](#)

Source: [Computer Methods in Applied Mechanics and Engineering](#)

[A New Shop Scheduling Approach in Support of Sustainable Manufacturing](#)

#### Related research

People also read

Recommended articles

Cited by  
87

## Information for

Authors

R&D professionals

Editors

Librarians

Societies

## Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

## Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

## Help and information

Help and contact

Newsroom

All journals

Books

## Keep up to date

Register to receive personalised research and resources  
by email

 Sign me up

  

  

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility



Registered in England & Wales No. 01072954  
5 Howick Place | London | SW1P 1WG