

Q

On Tuesday 1 July 2025, 04:00-21:00 GMT, we'll be making some site updates on Taylor & Francis Online. You'll still be able to search, browse and read our articles, where access rights already apply. Registration, purchasing, activation of tokens, eprints and other features of Your Account will be unavailable during this scheduled work.

Home ► All Journals ► Physical Sciences ► Journal of Macromolecular Science, Part B ► List of Issues ► Volume 49, Issue 1 ► The Construction of Sandbag Microstructu

Journal of Macromolecular Science, Part B > Physics Volume 49, 2010 - <u>Issue 1</u>

7910ViewsCrossRef citations to dateAltmetric

Original Articles

The Construction of Sandbag Microstructure in Polyamide 6/Ethylene–Propylene–Diene Terpolymer/Nanometer Calcium Carbonate Ternary Composite

Xu Wang, Xiaodong Wang & Xiangbin Xu

Pages 33-42 | Received 01 Nov 2008, Accepted 06 Apr 2009, Published online: 13 Jan 2010

Solution Cite this article Attps://doi.org/10.1080/00222340903333690

We Care About Your Privacy

We and our 909 partners store and access personal data, like browsing data or unique identifiers, on your device. Selecting "I Accept" enables tracking technologies to support the purposes shown under "we and our partners process data to provide," whereas selecting "Reject All" or withdrawing your consent will disable them. If trackers are disabled, some content and ads you see may not be as relevant to you. You can resurface this menu to change your choices or withdraw consent at any time by clicking the ["privacy preferences"] link on the bottom of the webpage [or the floating icon on the bottom-left of the webpage, if applicable]. Your choices will have effect within our Website. For more details, refer to our Privacy Policy. <u>Here</u>

A sandb diene te composi tension l microsco microstr

. .

Full A

🔒 Repri

Abs

oropyleneary interfacial ron aled that the ed EPDM and

I Accept

Reject All

Show Purpose

nano-CaCO₃ dispersion structure to the sandbag structure and finally to the separated

dispersion structure again with the increase of EPDM-g-MA content in the elastomer phase. The mechanical results showed the composites with the sandbag microstructure exhibited excellent toughness and stiffness.

Acknowledgements

The authors gratefully acknowledge the financial support of this work by the Nature Science Foundation of China (contract number: 50573067).

Related research (
People also read	Recommended articles	Cited by 1
		×

Information for	Open access
Authors	Overview
R&D professionals	Open journals
Editors	Open Select
Librarians	Dove Medical Press
Societies	F1000Research
Opportunities	Help and information
Reprints and e-prints	Help and contact
Advertising solutions	Newsroom
Accelerated publication	All journals
Corporate access solutions	Books

Keep up to date

Register to receive personalised research and resources by email

🔛 Sign me u

