



Q

Home ► All Journals ► Physical Sciences ► Molecular Physics ► List of Issues ► Volume 117, Issue 3 ► Competition between σ-hole pnicogen bond ....

#### Molecular Physics >

An International Journal at the Interface Between Chemistry and Physics Volume 117, 2019 - <u>Issue 3</u>

186200ViewsCrossRef citations to dateAltmetric

**Research Article** 

# Competition between $\sigma$ -hole pnicogen bond and $\pi$ -hole tetrel bond in complexes of CF<sub>2</sub>=CFZH<sub>2</sub> (Z = P, As, and Sb)

Wenbo Dong, Yu Wang, Jianbo Cheng, Xin Yang & Qingzhong Li Pages 251-259 | Received 12 Jun 2018, Accepted 24 Jul 2018, Published online: 12 Aug 2018



#### ABSTRACT

A computational study of the complexes formed by  $F_2C=CFZH_2$  (Z = P, As, and Sb) and  $F_2C=CFPF_2$  with two Lewis bases (NH<sub>3</sub> and NMe<sub>3</sub>) has been carried out. In general, two minima complexes are found, one with a  $\sigma$ -hole pnicogen bond and the other one with a  $\pi$ -hole tetrel bond in most complexes but two  $\sigma$ -hole pnicogen bonded complexes are obtained for  $F_2C=CFZH_2$  and NH<sub>3</sub>. They have similar stability though  $F_2C=CFSbH_2$  engages in a much stronger  $\sigma$ -hole pnicogen bond with NMe<sub>3</sub>. The -PF<sub>2</sub> substitution makes the  $\pi$ -hole on the terminal carbon form a tetrel bond with NH<sub>3</sub>. A heavier -ZH<sub>2</sub> group engages in a stronger  $\sigma$ -hole pnicogen bond but results in a weaker  $\pi$ -hole tetrel bond. Other than electrostatic interaction, the stability of both complexes is attributed to the charge transfer from the N lone pair into the C-Z/H-Z anti-bonding orbital in the pnicogen bond and the C=C anti-bonding orbital in the tetrel bond.

The  $\sigma$ -hole pnicogen bonded and  $\pi$ -hole tetrel bonded complexes between  $F_2C=CFZH_2$  (Z = P, As, and Sb) and two Lewis bases (NH<sub>3</sub> and NMe<sub>3</sub>) have been compared. The results indicate that both interactions can compete, dependent on the nature of the N base.



### Disclosure statement

No potential conflict of interest was reported by the authors.

## Additional information

## Funding

This work was supported by National Natural Science Foundation of China [21573188].







Related research 1

People also read

**Recommended articles** 

Cited by 20

| Information for            | Open access          |
|----------------------------|----------------------|
| Authors                    | Overview             |
| R&D professionals          | Open journals        |
| Editors                    | Open Select          |
| Librarians                 | Dove Medical Press   |
| Societies                  | F1000Research        |
| Opportunities              | Help and information |
| Reprints and e-prints      | Help and contact     |
| Advertising solutions      | Newsroom             |
| Accelerated publication    | All journals         |
| Corporate access solutions | Books                |

#### Keep up to date

Register to receive personalised research and resources by email





Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions Accessibility

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG

