Molecular Physics >
An International Journal at the Interface Between Chemistry and Physics
Volume 117, 2019 - Issue 3

| 173 | 15 |
| :--- | :--- | :--- |
| Views | CrossRef citations to date Altmetric |

Research Article
Competition between σ-hole pnicogen bond and π-hole tetrel bond in complexes of $\mathrm{CF}_{2}=\mathrm{CFZH}_{2}(\mathrm{Z}=\mathrm{P}, \mathrm{As}$, and Sb$)$
Wenbo Dong, Yu Wang, Jianbo Cheng, Xin Yang \& Qingzhong Li \sim
Pages 251-259 | Received 12 Jun 2018, Accepted 24 Jul 2018, Published online: 12 Aug 2018
SS Cite this article https://doi.org/10.1080/00268976.2018.1508782 Check for updates

Read this article

ABSTRACT

A computational study of the complexes formed by $\mathrm{F}_{2} \mathrm{C}=\mathrm{CFZH} \mathrm{C}_{2}(\mathrm{Z}=\mathrm{P}, \mathrm{As}$, and Sb) and $\mathrm{F}_{2} \mathrm{C}=\mathrm{CFPF}_{2}$ with two Lewis bases $\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NMe}_{3}\right)$ has been carried out. In general, two minima complexes are found, one with a σ-hole pnicogen bond and the other one with a π-hole obtainec engages makest grou bond. to the cr

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect $\begin{array}{cl} & \text { nplexes are } \\ \text { Accept All } & \mathrm{FSbH}_{2} \\ \text { Stitution }\end{array}$ pnicoge from you, please see our Privacy Policy.

\qquad
(

\square

($\mathrm{Z}=\mathrm{P}, \mathrm{As}$, and Sb) and two Lewis bases $\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NMe}_{3}\right)$ have been compared. The
results indicate that both interactions can compete, dependent on the nature of the N
base.
GRAPHICAL ABSTRACT

($\mathrm{Z}=\mathrm{P}, \mathrm{As}$, and Sb) and two Lewis bases $\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NM}_{3}\right)$ have been compar
results indicate that both interactions can compete, dependent on the natur
base.
GRAPHICAL ABSTRACT
$\mathrm{Z}=\mathrm{P}, \mathrm{As}$, and Sb) and two Lewis bases $\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NMe}_{3}\right)$ have been compar
results indicate that both interactions can compete, dependent on the nature
base.
GRAPHICAL ABSTRACT
$\mathrm{Z}=\mathrm{P}, \mathrm{As}$, and Sb) and two Lewis bases $\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NMe}_{3}\right)$ have been compar
results indicate that both interactions can compete, dependent on the nature
base.
GRAPHICAL ABSTRACT
$\mathrm{Z}=\mathrm{P}, \mathrm{As}$, and Sb) and two Lewis bases $\left(\mathrm{NH}_{3}\right.$ and $\left.\mathrm{NMe}_{3}\right)$ have been compar
results indicate that both interactions can compete, dependent on the nature
base.
GRAPHICAL ABSTRACT

results indicate that both interactions can compete, dependent on the nature base.

results indicate that both interactions can compete, dependent on the nature base.
The σ-hole pnicogen bonded and π-hole tetrel bonded complexes between $\mathrm{F}_{2} \mathrm{C}=\mathrm{CFZH} \mathrm{C}_{2}$

results indicate that both interactions can compete, dependent on the nature base.

[^0] V

 -

[^1]

\qquad

[^2]

[^3]
Related research (i)

People also read \quad Recommended articles | Cited by |
| :---: |
| 15 |

Information for
Authors
R\&D professionals
Editors
Librarians
Societies
Opportunities
Reprints and e-prints
Advertising solutions
Accelerated publication
Corporate access solutions
Open access

Overview
Open journals
Open Select
Dove Medical Press

F1000Research

Help and information

Help and contact
Newsroom
All journals
Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

About Cookies On This Site
We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.

Settings

[^0]:

[^1]:
 \square -

[^2]:[^3]: \qquad

