

Q

Home ► All Journals ► Physical Sciences ► Molecular Physics ► List of Issues ► Volume 117, Issue 3 ► Competition between σ-hole pnicogen bond

Molecular Physics >

An International Journal at the Interface Between Chemistry and Physics

Volume 117, 2019 - <u>Issue 3</u>

 $\begin{array}{ccc} 190 & 21 & & 0 \\ \text{Views} & \text{CrossRef citations to date} & \text{Altmetric} \end{array}$

Research Article

Competition between σ -hole pnicogen bond and π -hole tetrel bond in complexes of CF_2 = $CFZH_2$ (Z = P, As, and Sb)

Wenbo Dong, Yu Wang, Jianbo Cheng, Xin Yang & Qingzhong Li
Pages 251-259 | Received 12 Jun 2018, Accepted 24 Jul 2018, Published online: 12 Aug 2018

66 Cite this article

▶ https://doi.org/10.1080/00268976.2018.1508782

- Full Article
- Figures & data
- References
- Supplemental
- **66** Citations
- **Metrics**

- Reprints & Permissions
- Read this article

ABSTRACT

A computational study of the complexes formed by $F_2C=CFZH_2$ (Z=P, As, and Sb) and $F_2C=CFPF_2$ with two Lewis bases (NH₃ and NMe₃) has been carried out. In general, two minima complexes are found, one with a σ -hole pnicogen bond and the other one with a π -hole tetrel bond in most complexes but two σ -hole pnicogen bonded complexes are obtained for $F_2C=CFZH_2$ and NH₃. They have similar stability though $F_2C=CFSbH_2$ engages in a much stronger σ -hole pnicogen bond with NMe₃. The -PF₂ substitution makes the π -hole on the terminal carbon form a tetrel bond with NH₃. A heavier -ZH₂ group engages in a stronger σ -hole pnicogen bond but results in a weaker π -hole tetrel bond. Other than electrostatic interaction, the stability of both complexes is attributed

to the charge transfer from the N lone pair into the C–Z/H–Z anti-bonding orbital in the pnicogen bond and the C=C anti-bonding orbital in the tetrel bond.

The σ -hole pnicogen bonded and π -hole tetrel bonded complexes between $F_2C=CFZH_2$ (Z=P, As, and Sb) and two Lewis bases (NH $_3$ and NMe $_3$) have been compared. The results indicate that both interactions can compete, dependent on the nature of the N base.

GRAPHICAL ABSTRACT

KEYWORDS:

 σ -hole pnicogen bond π -hole tetrel bond NBO AIM

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Natural Science Foundation of China [21573188].

Related Research Data

Computational insights into structural and optical properties of P-containing and N-containing ligands capped CdSe clusters

Source: Molecular Simulation

Binding Mechanisms in Supramolecular Complexes

Source: Angewandte Chemie International Edition

Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge

transfer in halogen bonding with energy decomposition analysis

Source: Physical Chemistry Chemical Physics

VMD: Visual molecular dynamics

Source: Journal of Molecular Graphics

Competition and cooperativity between tetrel bond and chalcogen bond in complexes

involving F2CX (X = Se and Te)

Source: Chemical Physics Letters

Comparison of σ -Hole and π -Hole Tetrel Bonds Formed by Pyrazine and 1,4-

Dicyanobenzene: The Interplay between Anion- π and Tetrel Bonds

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

Accessibility

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG