

Molecular Physics >

An International Journal at the Interface Between Chemistry and Physics

Volume 117, 2019 - [Issue 3](#)

190 | 21
Views | CrossRef citations to date | Altmetric

Research Article

Competition between σ -hole pnicogen bond and π -hole tetrel bond in complexes of $\text{CF}_2=\text{CFZH}_2$ (Z = P, As, and Sb)

Wenbo Dong, Yu Wang, Jianbo Cheng, Xin Yang & Qingzhong Li

Pages 251-259 | Received 12 Jun 2018, Accepted 24 Jul 2018, Published online: 12 Aug 2018

Cite this article <https://doi.org/10.1080/00268976.2018.1508782>

Check for updates

Sample our
Engineering & Technology
Journals
 >> [Sign in here](#) to start your access
to the latest two volumes for 14 days

Full Article

Figures & data

References

Supplemental

Citations

Metrics

Reprints & Permissions

Read this article

Share

ABSTRACT

A computational study of the complexes formed by $\text{F}_2\text{C}=\text{CFZH}_2$ (Z = P, As, and Sb) and $\text{F}_2\text{C}=\text{CFPF}_2$ with two Lewis bases (NH_3 and NMe_3) has been carried out. In general, two minima complexes are found, one with a σ -hole pnicogen bond and the other one with a π -hole tetrel bond in most complexes but two σ -hole pnicogen bonded complexes are obtained for $\text{F}_2\text{C}=\text{CFZH}_2$ and NH_3 . They have similar stability though $\text{F}_2\text{C}=\text{CFSbH}_2$ engages in a much stronger σ -hole pnicogen bond with NMe_3 . The $-\text{PF}_2$ substitution makes the π -hole on the terminal carbon form a tetrel bond with NH_3 . A heavier $-\text{ZH}_2$ group engages in a stronger σ -hole pnicogen bond but results in a weaker π -hole tetrel bond. Other than electrostatic interaction, the stability of both complexes is attributed

to the charge transfer from the N lone pair into the C-Z/H-Z anti-bonding orbital in the pnicogen bond and the C=C anti-bonding orbital in the tetrel bond.

The σ -hole pnicogen bonded and π -hole tetrel bonded complexes between $\text{F}_2\text{C}=\text{CFZH}_2$ ($\text{Z} = \text{P, As, and Sb}$) and two Lewis bases (NH_3 and NMe_3) have been compared. The results indicate that both interactions can compete, dependent on the nature of the N base.

GRAPHICAL ABSTRACT

KEYWORDS:

σ -hole pnicogen bond

π -hole tetrel bond

NBO

AIM

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by National Natural Science Foundation of China [21573188].

Related Research Data

[Computational insights into structural and optical properties of P-containing and N-containing ligands capped CdSe clusters](#)

Source: Molecular Simulation

[Binding Mechanisms in Supramolecular Complexes](#)

Source: Angewandte Chemie International Edition

[Characterizing the interplay of Pauli repulsion, electrostatics, dispersion and charge transfer in halogen bonding with energy decomposition analysis](#)

Source: Physical Chemistry Chemical Physics

[VMD: Visual molecular dynamics](#)

Source: Journal of Molecular Graphics

[Competition and cooperativity between tetrel bond and chalcogen bond in complexes involving F₂CX \(X = Se and Te\)](#)

Source: Chemical Physics Letters

[Comparison of \$\sigma\$ -Hole and \$\pi\$ -Hole Tetrel Bonds Formed by Pyrazine and 1,4-](#)

[Dicyanobenzene: The Interplay between Anion- \$\pi\$ and Tetrel Bonds](#)

Related research

Information for

[Authors](#)[R&D professionals](#)[Editors](#)[Librarians](#)[Societies](#)

Opportunities

[Reprints and e-prints](#)[Advertising solutions](#)[Accelerated publication](#)[Corporate access solutions](#)

Open access

[Overview](#)[Open journals](#)[Open Select](#)[Dove Medical Press](#)[F1000Research](#)

Help and information

[Help and contact](#)[Newsroom](#)[All journals](#)[Books](#)

Keep up to date

Register to receive personalised research and resources
by email

 [Sign me up](#)