

International Journal of Polymeric Materials and Polymeric Biomaterials >

Volume 60, 2011 - Issue 12

1,004 75

Views CrossRef citations to date Altmetric

0

Original Articles

Chitosan Aerogels Exhibiting High Surface Area for Biomedical Application: Preparation, Characterization, and Antibacterial Study

Kumari Rinki, Pradip K. Dutta Andrew J. Hunt, Duncan J. Macquarrie & James H. Clark

Pages 988-999 | Received 08 Sep 2010, Accepted 08 Jan 2011, Published online: 08 Sep 2011

Cite this article <https://doi.org/10.1080/00914037.2011.553849>

Sample our
Physical Sciences
Journals

>> [Sign in here](#) to start your access
to the latest two volumes for 14 days

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

Abstract

The objective of the present work is to improve the surface area of aerogel via supercritical carbon dioxide (sc · CO₂) treatment and thus to obtain the chitosan derivative. The resulting mesoporous material exhibits the typical characteristics of aerogels such as high porosity and high surface area. The aerogels were characterized using FTIR, SEM, TEM, and thermal analysis. The specific surface areas and porosities of aerogels were determined using N₂ adsorption. The antibacterial assays were done using *E. coli*. The prepared chitosan aerogels show important properties such as biocompatibility, non-toxicity, and antibacterial activity, making them suitable for biomedical applications.

aerogels

chitosan

sc · CO₂

Acknowledgments

The authors thank Commonwealth Scholarship Commission-London for providing an Academic Staff Fellowship Award-2007 to PKD and KR is thankful to Director, MNNIT, Allahabad, for providing her institute fellowship. KR also acknowledges Ms. Richa Bhargava, Department of Physics, MNNIT, Allahabad, for her help in carrying out the antibacterial activity. We also express our gratefulness to Dr. Kotu, Sr. Scientist of BRI, Nagda, for the chemical analysis of the chitosan sample, and UGC, New Delhi for the research grant.

Related Research Data

[A kinetic study on the thermal degradation of N,N,N-trimethylchitosan](#)

Source: [Polymer Degradation and Stability](#)

[Chemistry of Aerogels and Their Applications](#)

Source: [ChemInform](#)

[Stimulatory effect on bone formation exerted by a modified chitosan](#)

Source: [Biomaterials](#)

[Porous chitosan scaffolds for tissue engineering](#)

Source: [Biomaterials](#)

[Synthesis of silica aerogel blanket by ambient drying method using water glass based precursor and glass wool modified by alumina sol](#)

Source: [Journal of Non-Crystalline Solids](#)

[Accessibility of the Functional Groups of Chitosan Aerogel Probed by FT-IR-Monitored Deuteration](#)

Source: [Biomacromolecules](#)

[Investigation of ionic conductivity of composite gel polymer electrolyte membranes](#)

Information for

[Authors](#)[R&D professionals](#)[Editors](#)[Librarians](#)[Societies](#)

Opportunities

[Reprints and e-prints](#)[Advertising solutions](#)[Accelerated publication](#)[Corporate access solutions](#)

Open access

[Overview](#)[Open journals](#)[Open Select](#)[Dove Medical Press](#)[F1000Research](#)

Help and information

[Help and contact](#)[Newsroom](#)[All journals](#)[Books](#)

Keep up to date

Register to receive personalised research and resources
by email

 [Sign me up](#)