

Q

Home ► All Journals ► Physical Sciences ► Phase Transitions ► List of Issues ► Volume 81, Issue 5 ► Soft mode dispersion and 'waterfall' phe

Phase Transitions >

A Multinational Journal Volume 81, 2008 - <u>Issue 5</u>

120160ViewsCrossRef citations to dateAltmetric

Original Articles

Soft mode dispersion and 'waterfall' phenomenon in relaxors revisited

J. Hlinka 🔽 & M. Kempa

Pages 491-508 | Received 03 Dec 2007, Accepted 04 Feb 2008, Published online: 07 May 2008

6 Cite this article

Abstract

Results of recent inelastic neutron scattering studies of lead-based relaxor ferroelectrics by Gvasaliya et al. [J. Phys.: Condens. Matter 17, 4343 (2005); J. Phys.: Condens. Matter 19, 016219 (2007)] have put in question the existence of the "waterfall" anomaly-an apparent vertical dispersion segment joining the TA and TO branches-observed earlier in low-energy [ξ00] phonon dispersion curves of these materials. In the present article, we review the results of earlier experiments and model calculations together with the outcome of our recent measurements on PMN using the same instrumental set-up as Gvasaliya et al. to conclude that the "waterfall" feature is not an experimental artefact. We also give some hints on a possible explanation of the results of Gvasaliya et al., by exploring the fact that the reported dispersion of the underdamped transverse optic branch follows the longitudinal acoustic (LA) branch dispersion surprisingly closely.

Keywords:

Acknowledgements

The work is partly based on experiments performed at the Swiss spallation neutron source SINQ, Paul Scherrer Institute, Villigen, Switzerland. This research project has been supported by the European Commission under the 6th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures. Contract No.: RII3-CT-2003-505925. Additional financial support was obtained from the Czech grant agencies (projects GACR 202/06/0403 and GACR 202/06/0411 and AVOZ 10100520). Authors thank to Dr S. Gvasaliya from Laboratory for Neutron Scattering of ETH Zurich and Paul Scherrer Institut in Villigen for useful discussions and the help with set-up of the experiment at TASP instrument, to Dr J. Petzelt from the Institute of Physics of Czech Academy of Science in Prague for careful reading of the manuscript and to Dr J. Kulda from the Institute Laue-Langevin for his long-term interest, encouragement, valuable suggestions and numerous critical discussions.

Notes

Notes

1. In the rest of this article, we use reduced (dimensionless) phonon wave vectors expressed in reciprocal lattice units (r.l.u.) given by $c^* = 2\pi/c$, (e.g. for PMN, c = 4.04 Å, i.e. $c^* = 2\pi/c = 1.555$ Å⁻¹).

2. First two hypotheses are close to those invoked in Ref. <u>17</u>.

3. Apart from the obvious misprint–extra factor of 2 in arguments of all trignometric functions introduced in Ref. <u>14</u>.

4. This additional mode should not be confused with additional relaxations in the GHz region, often called (narrow) central peaks, which are not in the scope of this article.

5. We have combined the data from the (200) and (300) BZs as D $_{\rm q}$ should be independent of the BZ choice.

6. In principle, PMN is known to grow also, for example in pyrochlore structure, but in this case both the lattice parameters and the TO mode frequency are completely different.

7. It was argued in <u>9</u> that the TO mode cannot couple noticeably to the TA branch because the independent mode intensities do not change with temperature. However, this not a valid argument since the measurements shown in figure of Ref. <u>9</u> were done in (20q) zone, where both TA and TO modes have similar structure factors so that eventual eigenvector change has no chance to produce such drastic intensity changes as those observed in the quoted <u>9</u> case of SrTiO₃.

Related Research Data
The rhombohedral phase with incommensurate modulation in $Na_{1/2}Bi_{1/2}TiO_3$
Source: Phase Transitions
Broad-band dielectric response of PbMg1/3Nb2/3O3 relaxor ferroelectrics: Single
crystals, ceramics and thin films
Source: Journal of the European Ceramic Society
Neutron scattering studies of the mechanism of ferroelectricity in 68% PbMg _{1/3} Nb _{2/3} O ₃ -
32%PbTiO ₃
Source: Journal of Physics Condensed Matter
Origin of the "Waterfall" Effect in Phonon Dispersion of Relaxor Perovskites
Source: Physical Review Letters
Distribution of correlation radii in disordered ferroelectrics
Source: Applied Physics Letters
Inelastic Neutron Scattering from Single-Domain BaTiO3
Source: Unknown Repository
The Lineshape of Inelastic Neutron Scattering in Relaxor Ferroelectrics
Source: Physics of the Solid State
Soft and central mode behaviour in PbMg _{1/3} Nb _{2/3} O ₃ relaxor ferroelectric
Source: Journal of Physics Condensed Matter
Mode coupling and polar nanoregions in the relaxor ferroelectricPb(Mg1/3Nb2/3)O3
Source: Unknown Repository
Soft Phonon Anomalies in the Relaxor FerroelectricPb(Zn1/3Nb2/3)0.92Ti0.08O3

Source: Physical Review Letters Soft Mode Dynamics above and below the Burns Temperature in the RelaxorPb(Mg1/3Nb2/3)O3 Source: Physical Review Letters Direct evidence of soft mode behavior near the Burns temperature in thePbMg1/3Nb2/3O3relaxor ferroelectric Source: Unknown Repository Phonons and fractons in the vibration spectrum of the relaxor ferroelectric PbMg1/3Nb2/3O3 Source: Physica B Condensed Matter Dirty displacive ferroelectrics Source: Unknown Repository Diffuse scattering in Pb(Zm_{1/3}Nb_{2/3})O₃with 8 PbTiO₃by quasi-elastic neutron scattering Source: Journal of Physics Condensed Matter Strong Influence of the Diffuse Component on the Lattice Dynamics in Pb(Mg_{1/3}Nb_{2/3})O₃ Source: Journal of the Physical Society of Japan Neutron Scattering with a Triple-Axis Spectrometer Source: Unknown Repository Quasi-elastic scattering, random fields and phonon-coupling effects in PbMg_{1/3}Nb_{2/3}O₃ Source: Journal of Physics Condensed Matter Infrared and Raman spectroscopy of [Pb(Zn1/3Nb2/3)O3]0.92-[PbTiO3]0.08 and [Pb(Mg1/3Nb2/3)O3]0.71-[PbTiO3]0.29 single crystals Source: Journal of Applied Physics Polar modes in relaxorPbMg1/3Nb2/3O3by hyper-Raman scattering Source: Physical Review B Inelastic neutron scattering study of the relaxor ferroelectric PbMg Nb O at high temperatures Source: The European Physical Journal B Dynamical effects of the nanometer-sized polarized domains inPb(Zn1/3Nb2/3)O3 Source: Unknown Repository Crystal Dynamics of Lead. I. Dispersion Curves at 100°K Source: Unknown Repository Soft mode anomalies in the perovskite relaxor Pb(Mg[sub 1/3]Nb[sub 2/3])O[sub 3] Source: Unknown Repository Raman scattering from in-plane lattice modes in low-stage graphite-alkali-metal compounds Source: Unknown Repository Anisotropic Dielectric Function in Polar Nanoregions of Relaxor Ferroelectrics Source: Physical Review Letters

Phase diagram of the relaxor ferroelectric $(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3$
Source: Unknown Repository
Hyper-Raman-active soft mode inPb(Mg1/3Nb2/3)0.73Ti0.27O3
Source: Physical Review B
Lattice Dynamics of Disordered Perovskite Pb(Zn _{1/3} Nb _{2/3})O ₃
Source: Journal of the Physical Society of Japan
Phonons in PbMg 1/3 Nb 2/3 O 3 Measured by Inelastic Neutron Scattering
Source: Ferroelectrics
Disorder and relaxation mode in the lattice dynamics of thePbMg1/3Nb2/3O3relaxor
ferroelectric
Source: Physical Review B
Anomalous transverse acoustic phonon broadening in the relaxor
ferroelectricPb(Mg1/3Nb2/3)0.8Ti0.2O3
Source: Unknown Repository
Soft-mode spectroscopy: Experimental studies of structural phase transitions
Source: Reviews of Modern Physics
Nonferroelectric aging in the relaxorPbMg1/3Nb2/3O3
Source: Physical Review B
Linking provided by Schole%plorer

Related research 1

People also read	Recommended articles	Cited by 16
------------------	----------------------	----------------

Information for	Open access
Authors	Overview
R&D professionals	Open journals
Editors	Open Select
Librarians	Dove Medical Press
Societies	F1000Research
Opportunities	Help and information
Reprints and e-prints	Help and contact
Advertising solutions	Newsroom
Accelerated publication	All journals
Corporate access solutions	Books

Keep up to date

Register to receive personalised research and resources by email

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG

Taylor & Francis Group an informa business