

Journal of Adhesion Science and Technology >
Volume 27, 2013 - [Issue 18-19: Biobased Adhesives](#)

369 | 57
Views | CrossRef citations to date | Altmetric

Articles

Soy flour dispersibility and performance as wood adhesive

Charles R. Frihart & Holly Satori

Pages 2043-2052 | Received 14 Mar 2011, Accepted 15 Nov 2011, Published online: 10 Aug 2012

[Cite this article](#) <https://doi.org/10.1080/01694243.2012.696948>

Sample our
Physical Sciences
Journals

>> [Sign in here](#) to start your access
to the latest two volumes for 14 days

[Full Article](#)

[Figures & data](#)

[References](#)

[Citations](#)

[Metrics](#)

[Reprints & Permissions](#)

[Read this article](#)

[Share](#)

Abstract

Soy flour adhesives using polyamidoamine-epichlorohydrin (PAE) resin as the curing agent are being used commercially to make bonded wood products. The original studies on the soy-PAE adhesives used purified soy protein isolate, but the much lower cost soy flour is now used commercially. We examined the performance of commercially available soy flours that have their proteins either mainly in their native (90 protein dispersibility index (PDI)) or denatured (70 and 20 PDI) states. We expected that the more native state soy proteins with their better dispersibility would provide better adhesion to wood surfaces and enhanced reaction with PAE resin. Small-scale wood bonding tests showed that neither of these effects was observed without and with a low level of PAE. In these tests, the solids content of the soy formulations had a large influence on adhesive viscosity but little influence on bond strength. Additionally, little

difference was observed in any of the adhesive or viscosity properties between the soy flours having either a 0.152 or 0.075 mm (100 or 200 mesh) particle size.

Keywords:

soy flour

dispersibility

bond strength

viscosity

particle size

Acknowledgments

We thank United Soybean Board through grant 0458 and Ashland-Hercules Water Technologies for support of this work. The comments of Linda Lorenz and Jane O'Dell have been valuable to this program.

Related Research Data

[Varietal differences of carbohydrates in defatted soybean flour and soy protein isolate by-products](#)

Source: Carbohydrate Polymers

[Urea-formaldehyde-propionaldehyde physical gelation resins for improved swelling in water](#)

Source: Journal of Applied Polymer Science

[ISOLATION AND PROCESSING OF PLANT MATERIALS](#)

Source: Unknown Repository

[SOY PROTEIN ADHESIVES](#)

Source: Unknown Repository

[Environment-friendly soy flour-based resins without formaldehyde](#)

Source: Journal of Applied Polymer Science

[Chromatographic Analysis of the Reaction of Soy Flour with Formaldehyde and Phenol for Wood Adhesives](#)

Source: Journal of the American Oil Chemists Society

Related research

[People also read](#)

[Recommended articles](#)

Cited by
57

Information for

Authors
R&D professionals
Editors
Librarians
Societies
Opportunities

Reprints and e-prints
Advertising solutions
Accelerated publication
Corporate access solutions

Open access

Overview
Open journals
Open Select
Dove Medical Press
F1000Research
Help and information
Help and contact
Newsroom
All journals
Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited [Privacy policy](#) [Cookies](#) [Terms & conditions](#)
[Accessibility](#)

 Taylor and Francis Group

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG