

Q

Journal of Adhesion Science and Technology > Volume 27, 2013 - Issue 18-19: Biobased Adhesives

368560ViewsCrossRef citations to dateAltmetric

Articles

Soy flour dispersibility and performance as wood adhesive

Charles R. Frihart 🔽 & Holly Satori

Pages 2043-2052 | Received 14 Mar 2011, Accepted 15 Nov 2011, Published online: 10 Aug 2012

L Cite this article **I** https://doi.org/10.1080/01694243.2012.696948

Abstract

Soy flour adhesives using polyamidoamine-epichlorohydrin (PAE) resin as the curing agent are being used commercially to make bonded wood products. The original studies on the soy-PAE adhesives used purified soy protein isolate, but the much lower cost soy flour is now used commercially. We examined the performance of commercially available soy flours that have their proteins either mainly in their native (90 protein dispersibility index (PDI)) or denatured (70 and 20 PDI) states. We expected that the more native state soy proteins with their better dispersibility would provide better adhesion to wood surfaces and enhanced reaction with PAE resin. Small-scale wood bonding tests showed that neither of these effects was observed without and with a low level of PAE. In these tests, the solids content of the soy formulations had a large influence on adhesive viscosity but little influence on bond strength. Additionally, little difference was observed in any of the adhesive or viscosity properties between the soy flours having either a 0.152 or 0.075 mm (100 or 200 mesh) particle size.

Keywords:

Acknowledgments

We thank United Soybean Board through grant 0458 and Ashland-Hercules Water Technologies for support of this work. The comments of Linda Lorenz and Jane O'Dell have been valuable to this program.

Related Research Data
Varietal differences of carbohydrates in defatted soybean flour and soy protein isolate
by-products
Source: Carbohydrate Polymers
Urea-formaldehyde-propionaldehyde physical gelation resins for improved swelling in
water
Source: Journal of Applied Polymer Science
ISOLATION AND PROCESSING OF PLANT MATERIALS
Source: Unknown Repository
SOY PROTEIN ADHESIVES
Source: Unknown Repository
Environment-friendly soy flour-based resins without formaldehyde
Source: Journal of Applied Polymer Science
Chromatographic Analysis of the Reaction of Soy Flour with Formaldehyde and Phenol
for Wood Adhesives
Source: Journal of the American Oil Chemists Society
Morphology and Phase Separation of Hydrophobic Clusters of Soy Globular Protein
Polymers
Source: Macromolecular Bioscience
Investigation of soy protein-kymene [®] adhesive systems for wood composites
Source: Journal of the American Oil Chemists Society
Functional properties of soy proteins
Source: Journal of the American Oil Chemists Society

Improved Approaches to Analyze the Nonlinear Behavior of Adhesives in Bonded Assemblies Source: Unknown Repository Carbohydrate composition of soybean flours, protein concentrates, and isolates Source: Journal of Agricultural and Food Chemistry Isoelectric pH of polyamide-epichlorohydrin modified soy protein improved water resistance and adhesion properties Source: Journal of Applied Polymer Science Protein Adhesives for Wood Source: Unknown Repository Handbook of Adhesive Technology, Third Edition Source: Unknown Repository Thermal Denaturation and Coagulation of Proteins Source: Unknown Repository

Related research 1

People also read	Recommended articles	Cited by 56

Information for	Open access
Authors	Overview
R&D professionals	Open journals
Editors	Open Select
Librarians	Dove Medical Press
Societies	F1000Research
Opportunities	Help and information
Reprints and e-prints	Help and contact
Advertising solutions	Newsroom
Accelerated publication	All journals
Corporate access solutions	Books

Keep up to date

Register to receive personalised research and resources by email

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

Taylor & Francis Group an informa business

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG