

Home ► All Journals ► Cybernetics and Systems ► List of Issues ► Volume 37, Issue 4 ► NONLINEAR ROBUST CONTROL FOR PARALLEL AC

Cybernetics and Systems > An International Journal Volume 37, 2006 - Issue 4

66 5
Views CrossRef citations to date Altmetric

Original Articles

NONLINEAR ROBUST CONTROL FOR PARALLEL AC/DC TRANSMISSION SYSTEMS: A NEW ADAPTIVE BACK-STEPPING APPROACH

Jun Fu 🔀 & Jun Zhao

Pages 347-359 | Published online: 01 Sep 2006

Sample our
Engineering & Technology
Journals
>> Sign in here to start your access to the latest two volumes for 14 days

Full Article

Figures & data

References

66 Citations

Metrics

Reprints & Permissions

Read this article

ABSTF

By utilizing the power of the p

perform

approac

equivale

systems

dynamic

time est

perform

We Care About Your Privacy

We and our 842 partners store and/or access information on a device, such as unique IDs in cookies to process personal data. You may accept or manage your choices by clicking below, including your right to object where legitimate interest is used, or at any time in the privacy policy page. These choices will be signaled to our partners and will not affect browsing data. Privacy Policy

We and our partners process data to provide:

Use precise geolocation data. Actively scan device characteristics for identification. Store and/or access information on a device. Personalised advertising and content, advertising and content measurement, audience research and services development.

List of Partners (vendors)

I Accept

means that

Essential Onlon

ack-stepping
Show Purpose
r based on
cal certaintyrallel AC/DC
stimator and
and the reals better
adaptation.

Simulation results demonstrate that the proposed approach is better than the design

based on "classical" adaptive back-stepping in terms of properties of stability and parameter estimation and that it recovers the performance of the "full-information" controller, which is obtained by assuming that the parameters are known and apply standard back-stepping, hence it will be an alternative to practice engineering and applications.

This article was supported by the National Natural Science Foundation of China under Grants 60574013 and 60274009, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant 20020145007, and the Natural Science Foundation of Liaoning Province under Grant 20032020.

Information for Open access **Authors** Overview R&D professionals Open journals **Editors** Open Select Librarians **Dove Medical Press** F1000Research Societies Opportunities Help and information Reprints and e-prints Help and contact Advertising solutions Newsroom Accelerated publication All journals

Keep up to date

Corporate access solutions

Register to receive personalised research and resources by email

Sign me up

Registered 5 Howick P

