

Home ► All Journals ► Environment & Agriculture ► Scandinavian Journal of Forest Research ► Volume 19, Issue 6 ► Estimation of above ground forest biomas

List of Issues

Scandinavian Journal of Forest Research >

Volume 19, 2004 - Issue 6

545 158 0 Views CrossRef citations to date Altmetric

Original Articles

Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators

Kevin S. Lim & Paul M. Treitz

Pages 558-570 | Received 11 Nov 2003, Accepted 10 Aug 2004, Published online: 02 Sep 2006

Full Article

References

66 Citations

Metrics

➡ Reprints & Permissions

Read this article

Share

Abstract

A conceptual model describing why laser height metrics derived from airborne discrete return laser scanner data are highly correlated with above ground biomass is proposed. Following from this conceptual model, the concept of canopy-based quantile estimators of above ground forest biomass is introduced and applied to an uneven-aged, mature to overmature, tolerant hardwood forest. Results from using the 0th, 25th, 50th, 75th and 100th percentiles of the distributions of laser canopy heights to estimate above ground biomass are reported. A comparison of the five models for each dependent variable group did not reveal any overt differences between models with respect to their predictive capabilities. The coefficient of determination (r ²) for each model is greater than 0.80 and any two models may differ at most by up to 9%. Differences in root-

mean-square error (RMSE) between models for above ground total, stem wood, stem bark, live branch and foliage biomass were 8.1, 5.1, 2.9, 2.1 and 1.1 Mg ha^{-1} , respectively.

Keywords:

Acknowledgments

The authors gratefully acknowledge the financial support of the Centre for Research in Earth and Space Technologies (CRESTech), an Ontario Centre of Excellence, and Geomatics for Informed Decisions (GEOIDE), a Canadian National Centre of Excellence. Mr Lim acknowledges the support from the Natural Sciences and Engineering Research Council (NSERC) of Canada through a PGS-B scholarship and the Ontario Government through an Ontario Graduate Scholarship in Science and Technology. Dr Treitz would also like to acknowledge support of the Natural Sciences and Engineering Research Council (NSERC) for financial support through research grants. B. Prenzel, C. Sheriff and V. Thomas are thanked for their assistance with data collection. K. Baldwin and I. Morrison from the Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada are thanked for providing data for the Turkey Lakes watershed study area. The authors gratefully acknowledge Optech Inc. and LaserMap Image Plus for their support in acquiring and processing the LIDAR data for the Turkey Lakes watershed.

Notes

Lim, K. S. and Treitz, P. M. (Department of Geography, Faculty of Arts and Science, Queen's University, Kingston, Ontario, Canada, K7L 3N6). Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators.

Additional information

Notes on contributors

Kevin S. Lim

Lim, K. S. and Treitz, P. M. (Department of Geography, Faculty of Arts and

Science, Queen's University, Kingston, Ontario, Canada, K7L 3N6).

Estimation of above ground forest biomass from airborne discrete return

laser scanner data using canopy-based quantile estimators.

Related Research Data

Modeling forest canopy heights: The effects of canopy shape

Source: Remote Sensing of Environment LiDAR remote sensing of forest structure

Source: Progress in Physical Geography Earth and Environment

Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand

Characteristics in the Western Cascades of Oregon

Source: Remote Sensing of Environment

Organic matter and mineral distribution in an old-growth Acersaccharum forest near

the northern limit of its range

Source: Canadian Journal of Forest Research

Lidar remote sensing of biophysical properties of tolerant northern hardwood forests

Source: Canadian Journal of Remote Sensing

The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne

laser altimeter for mapping vegetation and topography

Source: ISPRS Journal of Photogrammetry and Remote Sensing

Related research 1

People also read

Recommended articles

Cited by

Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass >

Published online: 2 Jun 2014

Remote Sensing Technologies for Enhancing Forest Inventories: A Review >

Joanne C. White et al.

Canadian Journal of Remote Sensing

Published online: 27 Jul 2016

9

Information for Open access

Authors Overview

R&D professionals Open journals

Editors Open Select

Librarians Dove Medical Press

Societies F1000Research

Opportunities Help and information

Reprints and e-prints Help and contact

Advertising solutions Newsroom

Accelerated publication All journals

Corporate access solutions Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

Accessibility

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

