

Home ► All Journals ► Engineering & Technology ► Journal of Medical Engineering & Technology ► List of Issues ► Volume 41, Issue 3 ► Development, validity and reliability of

Journal of Medical Engineering & Technology >

Volume 41, 2017 - Issue 3

317 6 0 Views CrossRef citations to date Altmetric Innovation

Q

Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine

Andries W. Pienaar 🔽 & Justhinus G. Barnard

Pages 216-222 | Received 10 Sep 2015, Accepted 20 Oct 2016, Published online: 14 Nov 2016

Abstract

This study describes the development of a new portable muscle testing device, using air pressure as a biofeedback and strength testing tool. For this purpose, a pressure air biofeedback device (PAB®) was developed to measure and record the isometric extension strength of the lumbar multifidus muscle in asymptomatic and low back pain (LBP) persons. A total of 42 subjects (age 47.58 years, ±18.58) participated in this study. The validity of PAB[®] was assessed by comparing a selected measure, air pressure force in millibar (mb), to a standard criterion; calibrated weights in kilograms (kg) during day-to-day tests. Furthermore, clinical trial-to-trial and day-to-day tests of maximum voluntary isometric contraction (MVIC) of L5 lumbar multifidus were done to compare air pressure force (mb) to electromyography (EMG) in microvolt (μ V) and to

measure the reliability of PAB[®]. A highly significant relationship were found between air pressure output (mb) and calibrated weights (kg). In addition, Pearson correlation calculations showed a significant relationship between PAB[®] force (mb) and EMG activity (μ V) for all subjects (n = 42) examined, as well as for the asymptomatic group (n = 24). No relationship was detected for the LBP group (n = 18). In terms of lumbar extension strength, we found that asymptomatic subjects were significantly stronger than LBP subjects. The results of the PAB[®] test differentiated between LBP and asymptomatic subject's lumbar isometric extension strength without any risk to the subjects and also indicate that the lumbar isometric extension test with the new PAB[®]

Keywords:

Acknowledgements

Sincere appreciation is extended to electronics engineer, Mr Gary Webster (Webtex, Pinetown, South Africa) for the software development of the PAB[®] device.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Redefining the Future of Pain Medicine:

Integrating Innovation, Resilience, and Care

September 2-5

The Cosmopolitan of LAS VEGAS

Register Now!

Related research 1

People also read

Recommended articles

Cited by 6

Information for	Open access	
Authors	Overview	
R&D professionals	Open journals	
Editors	Open Select	
Librarians	Dove Medical Press	
Societies	F1000Research	
Opportunities	Help and information	
Reprints and e-prints	Help and contact	
Advertising solutions	Newsroom	
Accelerated publication	All journals	
Corporate access solutions	Books	

Keep up to date

Register to receive personalised research and resources by email

Copyright © 2025	Informa UK Limited	Privacy policy	Cookies	Terms & conditions	Francis Group
Accessibility					

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG