



Journal of Medical Engineering & Technology >

Volume 41, 2017 - Issue 3

330 | 7  
Views | CrossRef citations to date | Altmetric

Innovation

# Development, validity and reliability of a new pressure air biofeedback device (PAB) for measuring isometric extension strength of the lumbar spine

Andries W. Pienaar & Justhinus G. Barnard

Pages 216-222 | Received 10 Sep 2015, Accepted 20 Oct 2016, Published online: 14 Nov 2016

Cite this article <https://doi.org/10.1080/03091902.2016.1253794>

Check for updates

Sample our  
Engineering & Technology  
Journals  
**>> Sign in here to start your access  
to the latest two volumes for 14 days**

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

## Abstract

This study describes the development of a new portable muscle testing device, using air pressure as a biofeedback and strength testing tool. For this purpose, a pressure air biofeedback device (PAB<sup>®</sup>) was developed to measure and record the isometric extension strength of the lumbar multifidus muscle in asymptomatic and low back pain (LBP) persons. A total of 42 subjects (age 47.58 years,  $\pm 18.58$ ) participated in this study. The validity of PAB<sup>®</sup> was assessed by comparing a selected measure, air pressure force in millibar (mb), to a standard criterion; calibrated weights in kilograms (kg) during day-to-day tests. Furthermore, clinical trial-to-trial and day-to-day tests of maximum voluntary isometric contraction (MVIC) of L5 lumbar multifidus were done to

compare air pressure force (mb) to electromyography (EMG) in microvolt ( $\mu$ V) and to measure the reliability of PAB<sup>®</sup>. A highly significant relationship were found between air pressure output (mb) and calibrated weights (kg). In addition, Pearson correlation calculations showed a significant relationship between PAB<sup>®</sup> force (mb) and EMG activity ( $\mu$ V) for all subjects (n = 42) examined, as well as for the asymptomatic group (n = 24). No relationship was detected for the LBP group (n = 18). In terms of lumbar extension strength, we found that asymptomatic subjects were significantly stronger than LBP subjects. The results of the PAB<sup>®</sup> test differentiated between LBP and asymptomatic subject's lumbar isometric extension strength without any risk to the subjects and also indicate that the lumbar isometric extension test with the new PAB<sup>®</sup> device is reliable and valid.

Keywords:

PAB<sup>®</sup>   air pressure   isometric strength   low back pain (LBP)   reliability

## Acknowledgements

Sincere appreciation is extended to electronics engineer, Mr Gary Webster (Webtex, Pinetown, South Africa) for the software development of the PAB<sup>®</sup> device.

## Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

## Related research

People also read

Recommended articles

Cited by  
7

## Information for

Authors

R&D professionals

Editors

Librarians

Societies

## Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

## Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

## Help and information

Help and contact

Newsroom

All journals

Books

## Keep up to date

Register to receive personalised research and resources  
by email

 Sign me up

  

  

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility



Registered in England & Wales No. 01072954  
5 Howick Place | London | SW1P 1WG