

Journal of Modern Optics >

Volume 65, 2018 - Issue 5-6: SI: Quantum optics, cooling and collisions of ions and atoms

491 | 32 | 1
Views | CrossRef citations to date | Altmetric

Laser Spectroscopy of Trapped Ions

Absolute frequency measurement of the $^2S_{1/2} \rightarrow ^2F_{7/2}$ optical clock transition in $^{171}\text{Yb}^+$ with an uncertainty of 4×10^{-16} using a frequency link to international atomic time

Charles F. A. Baynham, Rachel M. Godun, Jonathan M. Jones, Steven A. King, Peter B. R. Nisbet-Jones, Fred Baynes, ... [show all](#)

Pages 585-591 | Received 30 Jun 2017, Accepted 06 Sep 2017, Published online: 06 Oct 2017

Cite this article <https://doi.org/10.1080/09500340.2017.1384514>

Check for updates

Sample our
Engineering & Technology
Journals
**>> Sign in here to start your access
to the latest two volumes for 14 days**

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

Abstract

The highly forbidden $2S1/2 \rightarrow 2F7/2$ electric octupole transition in $^{171}\text{Yb}^+$ is a potential candidate for a redefinition of the SI second. We present a measurement of the absolute frequency of this optical transition, performed using a frequency link to International Atomic Time to provide traceability to the SI second. The $^{171}\text{Yb}^+$ optical frequency standard was operated for 76% of a 25-day period, with the absolute frequency measured to be $642\ 121\ 496\ 772\ 645.14(26)$ Hz. The fractional uncertainty of 4.0×10^{-16} is comparable to that of the best previously reported measurement, which was made by a direct comparison to local caesium primary frequency standards.

Keywords:

! View correction statement:

[Publisher's Note](#)

Acknowledgements

We thank Peter Whibberley for helpful discussions and E. Anne Curtis for critical review of the manuscript prior to submission. We also note that our absolute frequency measurement derives its accuracy from the primary standards operated at other national measurement institutes around the world.

Notes

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was financially supported by the UK Department for Business, Energy and Industrial Strategy as part of the National Measurement System Programme; the European Metrology Research Programme (EMRP) project SIB55-ITOC; and the European Metrology Programme for Innovation and Research (EMPIR) project 15SIB03-OC18. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

Related research

People also read

Recommended articles

Cited by
32

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG