

Q

Home ► All Journals ► Economics, Finance & Business ► Applied Financial Economics ► List of Issues ► Volume 16, Issue 3 ► Evidence on the issuer effect in warrant

Applied Financial Economics >

Volume 16, 2006 - Issue 3

97 3 0 Views CrossRef citations to date Altmetric Original Articles

Evidence on the issuer effect in warrant overpricing

Geoffrey F. Loudon & Kien T. Nguyen

Pages 223-232 | Published online: 20 Aug 2006

G Cite this article **I** https://doi.org/10.1080/09603100500390976

Abstract

Prior literature offers evidence that warrant prices tend to be higher than the prices of matched options. Explanations for warrant overpricing include a liquidity premium, hedging costs, market power and investor perceptions. Each of these explanations suggest that overpricing is likely to be related to the identity of the issuer. Any such issuer effect may also be affected by differences in credit risk. This study reconfirms the existence of a large excess warrant premium and provides evidence that it is significantly related to the identity of the warrant issuer, even after taking into account important liquidity and hedging factors.

The authors thank the Securities Industry Research Centre of Asia-Pacific and the Australian Stock Exchange for making available the data used in this research.

Notes

 1 Institutional details described in this section about warrants and options traded on the ASX are taken from ASX (2000).

² Their other two proxies relate to whether trading was floor- or electronic-based and to whether options traders were obliged to make a market. Neither of these distinctions remain relevant in the prices tested in this study.

³ Results are not sensitive to using the standard deviation over the past 30 days as an alternative measure of volatility. Both volatility measures are similar having a correlation of 0.91. The exponentially-weighted moving average model was chosen as it places higher weight on more recent observations and is therefore likely to be a better measure of current volatility.

 ${}^{4}F = (S - d)(1 + r)^{T}$, where S is underlying price, d is present value of cash dividends, r is interest rate and T is time to maturity.

⁵ Volumes reported in the market have to be adjusted to be consistent. First the warrant volume is adjusted for the conversion ratio. Second the option volume is adjusted to recognise each contract is for 1000 shares.

⁶ These standard errors are heteroscedastic and autocorrelation consistent. Since daily data are being used, excluding weekends, the lag truncation length is set equal to five.

Information for	Open access	
Authors	Overview	
R&D professionals	Open journals	
Editors	Open Select	
Librarians	Dove Medical Press	
Societies	F1000Research	
Opportunities	Help and information	
Reprints and e-prints	Help and contact	
Advertising solutions	Newsroom	
Accelerated publication	All journals	
Corporate access solutions	Books	

Keep up to date

Register to receive personalised research and resources by email

Copyright © 2025	Informa UK Limited	Privacy policy	Cookies	Terms & conditions	Francis Group
Accessibility					

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG