

Applied Financial Economics >

Volume 20, 2010 - [Issue 18](#)

389 | 55
Views | CrossRef citations to date | Altmetric

Original Articles

Integer-valued moving average modelling of the number of transactions in stocks

Kurt Brännäs & A. M. M. Shahiduzzaman Quoreshi

Pages 1429-1440 | Published online: 13 Sep 2010

Cite this article <https://doi.org/10.1080/09603107.2010.498343>

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

Abstract

The Integer-valued Moving Average Model (INMA) is advanced to model the number of transactions in intra-day data of stocks. The conditional mean and variance properties are discussed and model extensions to include explanatory variables are offered. Least squares and generalized method of moment estimators are presented. In a small Monte Carlo study a feasible least squares estimator comes out as the best choice. Empirically we find support for the use of long-lag moving average models in a Swedish stock series. There is evidence of asymmetric effects of news about prices on the number of transactions.

Acknowledgements

The financial support from the Jan Wallander and Tom Hedelius Foundation is gratefully acknowledged. This version has gained from the comments of seminar/workshop audiences at Umeå, Uppsala and Tilburg universities.

Notes

¹ The INMA(∞) can also be obtained from the INAR(1), i.e. $y_t = \alpha \circ y_{t-1} + \varepsilon_t$ and $y_t = \alpha^t \circ y_0 + \sum_{i=1}^t \alpha^{t-i} \circ \varepsilon_i$ are equal in distribution. As a large t gives that $\alpha^t \approx 0$ and $\beta_i = \alpha^i$

² Pairs of thinning operations of the type and , for , are independent (McKenzie, [1988](#)). Assumptions of this type can be relaxed (cf. Brännäs and Hall, [2001](#)).

³ The experiments are performed using Fortran codes. Poisson random deviates are generated by the POIDEV function (Press et al., [1992](#)), while the binomial thinning is performed by the BNLDEV function.

⁴ and $\beta_k < 0.01$ for $k \geq 32$ for $\gamma_1 = -0.1$, the sum is 1.87 for $k \geq 16$ and $\gamma_1 = -0.2$, 1.61 for $k \geq 11$ and $\gamma_1 = -0.3$, and 1.45 for $k \geq 8$ and $\gamma_1 = -0.4$.

⁵ Note that for a count data INAR(1) model with a unit root the observed sequence of observations can not decline. Adding a MA part to the INAR(1) does not alter this feature. As is obvious from [Fig. 3](#) there are ups and downs in the present time series, so that a unit root can not logically be supported by the data.

⁶ In some experimentation with an AstraZeneca series lower order model representations ($q = 18$ and 30) are found.

Related Research Data

[Time series models with univariate margins in the convolution-closed infinitely divisible class](#)

Source: [Journal of Applied Probability](#)

[Conditional Heteroskedasticity in Asset Returns: A New Approach](#)

Source: [Unknown Repository](#)

[GENERALIZED INTEGER-VALUED AUTOREGRESSION](#)

Source: Econometric Reviews

Discretized time and conditional duration modelling for stock transaction data

Source: Applied Financial Economics

Some ARMA models for dependent sequences of poisson counts

Source: Advances in Applied Probability

Testing for Autocorrelation Using a Modified Box-Pierce Q Test

Source: International Economic Review

On autocorrelation in a Poisson regression model

Source: Biometrika

Related research

People also read

Recommended articles

Cited by
55

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG