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Abstract

A Venn diagram capable of expositing results relating to bias and variance of coefficient

estimates in multiple regression analysis is presented, along with suggestions for how it

can be used in teaching. In contrast to similar Venn diagrams used for portraying

results associated with the coefficient of determination, its pedagogical value is not

compromised in the presence of suppressor variables.
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1. Introduction

In a recent article in this journal, Ip (2001) discussed the use of Venn diagrams for

enhancing instruction of multiple regression concepts. The purpose of this note is to
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inform readers of several applications of Venn diagrams to regression analysis that

were not included in Ip's presentation, and to demonstrate some ways of using these

applications to improve student understanding of ordinary least squares (OLS)

regression. Because these alternative applications are not new to the literature, the

main contribution of this paper consists of suggestions for how this approach can be

used effectively in teaching.

The first use of Venn diagrams in regression analysis appears to be in the textbook by

Cohen and Cohen (1975). A major difficulty with its use occurs in the presence of

suppressor variables, a problem discussed at length by Ip (2001). No one denies that

Venn diagrams can mislead, just as no one denies that ignoring friction in expositions of

physical phenomena misleads, or using Euclidian geometry misleads because the

surface of the earth is curved. Such drawbacks have to be weighed against the

pedagogical benefits of the “misleading” expository device. As recognized by Ip, in the

case of applying the Venn diagram to regression analysis, reasonable instructors could

disagree on the pedagogical value of the Venn diagram because of the suppressor

variable problem.

Ip's article is confined to the use of Venn diagrams for analyzing the coefficient of

determination R , partial correlation, and sums of squares. In these cases, exposition is

compromised in the presence of suppressor variables. But there are other concepts in

regression analysis, thought by many to be of considerably more importance than R ,

which are not complicated by suppressor variables, the prime examples being bias and

variance of coefficient estimates. This article presents a different interpretation of Venn

diagrams, highlighting illustrations of bias and variance, and discusses how these

diagrams can be used to enhance the teaching of multiple regression.

2. An Alternative Interpretation

Kennedy (1981) extended the Venn diagram to the exposition of bias and variance in

the context of the classical linear regression (CLR) model, written as y = Xβ+ ε. Here

the dependent variable y is a linear function of several explanatory variables

represented by the matrix X, plus an independent and identically distributed error ε.

The usual CLR assumptions, such as that the expected value of ε is zero, and that X is

fixed in repeated samples, are invoked. For expository purposes, y and X are measured

as deviations from their means, and X is a single variable. As with all Venn diagrams,
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the crucial element is how areas on the diagram are interpreted. In  the circle

labeled y represents “variation” in y, and the circle labeled X represents “variation” in

X, where, for pedagogical purposes, “variation” is not explicitly defined but is left as an

intuitive concept. The overlap between the y and X circles, the purple area in ,

is interpreted as “variation” that y and X have in common - in this area y and X “move

together.” This co-movement is used by the OLS formula to estimate β , the slope

coefficient of X.

Figure 1. Venn diagram for regression.

Although the purple area represents the variation in y explained by X, just as in Ip's

application, Kennedy extends its interpretation in three substantive ways:

a. The purple area represents information used by the OLS formula when estimating

β ; if this information corresponds to variation in y uniquely explained by variation

in X, the resulting estimate of β  is unbiased.

b. A larger purple area means that more information is used in estimation, implying a

smaller variance of the β  estimate.

Figure 1

Figure 1
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c. The black area, the variation in y that cannot be explained by X, is attributed by

OLS to the error term, and so the magnitude of this area represents the magnitude

of the OLS estimate of σ , the variance of the error term. Notice a subtlety here.

The purple area is interpreted as information; the black area interpretation is quite

different - its magnitude reflects the magnitude of a parameter estimate.

To analyze multiple regression, Kennedy adopted the three intersecting circles diagram

of Cohen and Cohen (1975), which they named the “Ballantine” because of its

resemblance to the logo of a brand of beer; Kennedy reinterpreted the areas as

described above, and to emphasize this new interpretation changed its spelling to

“Ballentine.” Such a diagram is shown in , in which a new circle marked W is

added (with an associated slope β ), representing variation in another explanatory

variable. In the presentations of Cohen and Cohen (1975) and Ip (2001), the overlap

between the y circle and the X and W circles represents the variation in y explained by

variation in X and in W. The ratio of this area (the blue plus red plus green area in 

) to the y circle is interpreted as the R  from regressing y on X and W. Trouble

happens in the presence of suppressor variables because the red area may have to be

negative.

Figure 2. Ballentine Venn diagram.

2

Figure 2

w

Figure 2
2

 Article contents  Related research



Kennedy does not attempt to exposit R , but rather looks at a completely different set

of OLS properties - bias and variance. The following section describes what in my

experience are some particularly effective ways of using this diagram to teach the

properties of OLS estimates in the CLR model.

3. Teaching some Properties of OLS

I begin by carefully explaining the interpretations of the areas in  as described

above. Following this I put up  on the overhead and ask the class what will

happen using OLS when there is more than one explanatory variable, drawing to their

attention that it is not obvious what role is played by the red area. I note that if we were

to regress y on X alone, OLS would use the information in the blue plus red areas to

create its estimate of β , and if we were to regress y on W alone OLS would use the

information in the green plus red areas to create its estimate of β . I present three

options for the OLS estimator when y is regressed on X and W together.

a. Continue to use blue plus red to estimate β  and green plus red to estimate β .

b. Throw away the red area and just use blue to estimate β  and green to estimate β

c. Divide the red information into two parts in some way, and use blue plus part of red

to estimate β  and green plus the other part of red to estimate β .

I point out that several special cases of option c are possible, such as using blue and all

of red to estimate β  and only green to estimate β , or dividing red “equally” in some

way.

After setting this up I inform students that they are to guess what OLS does, and ask

them to vote for one of these options. (Voting has to be done one by one, because if

the class at large is asked to vote, invariably nobody votes for anything; Kennedy

(1978) is an exposition of this pedagogical device.) I have never had a majority vote for

the correct answer. Next I ask the class why it would make sense for an estimating

procedure to throw away the information in the red area. (It is this throwing away of the

red area that allows this application of the Venn diagram to avoid being compromised
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by the presence of a suppressor variable.) The ensuing discussion is quite useful, with

good students eventually figuring out the following.

a. The information in the red area is bad information - it has y “moving together” with

X and also with W so that we don't know if the movements in y are due to X or due

to W, so to be on the safe side we should throw away this information.

b. If only the blue area information is used to estimate β  and the green area

information is used to estimate β , unbiased estimates are produced, because the

blue area corresponds to variation in y uniquely attributable to X and the green

area corresponds to variation in y uniquely attributable to W.

An instructor may wish to elaborate on point b by noting that the variation in y in the

red area is actually due to joint movements in X and W because the red area

corresponds to X and W “moving together” as well as to y and X moving together and y

and W moving together. Suppose that in the red area when X changes by one W

changes by two, so that a joint movement of one by X and two by W gives rise to a

movement in y of β  + 2β . If β  = 5 and β = 7, this would be a movement of 19. If we

were to match this 19 movement in y with a unit movement in X we would get a β

estimate badly off the true value of β  = 5. When this is combined with the unbiased

estimate coming from the blue area information, a biased estimate results. Similarly, if

the 19 movement in y were matched with a two movement in W we would get an

estimate of 9.5 for β , badly off its true value of 7.

Instructors presenting an algebraic version of this material can demonstrate this result

by working through the usual derivation of the OLS estimate of β  as (X X ) X y

where y  = M y and X  = M X with M  = I - W(W W) W . The residualizing matrix M

removes that part of a variable explained by W, so that, in , y  and X  are

represented by areas blue plus yellow and orange plus blue, respectively; the OLS

estimate results from using the information in their overlap, the blue area. This matrix

formulation reveals how the case of three rather than two explanatory variables would

be analyzed. Let X represent a single explanatory variable and W represent a matrix of

observations on Z and Q, the other two explanatory variables. The W circle in the Venn

diagram now represents the union of the Z and Q circles.

The instructor can finish by noting that the yellow area in  represents the

magnitude of σ , the variance of the error term. The OLS estimating procedure uses the

magnitude of the area that cannot be explained by the regressors as its estimate of σ .
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In this case this is the yellow area, which is the correct area, so the OLS estimator of σ

is unbiased. This sets up the Venn diagram for investigation of several features of OLS

estimation, of which three are discussed below.

3.1 Multicollinearity

Ask the students how a greater degree of multicollinearity would manifest itself on the

Venn diagram. They should be able to guess that it is captured by increasing the

overlap between the X and W circles, as shown by moving from  to .

Next ask them if the higher collinearity causes bias. I go around the class and ask

everyone to commit to yes, no, or don't know. (Those answering don't know are not

asked later to explain their rationale.) Once this has been done, have someone who

voted with the majority offer an explanation, and then have someone who voted with

the minority offer a counter-explanation. Work with this until everyone sees that

because the OLS formula continues to use the information in the blue and green areas

to estimate the slopes of X and W, these estimates remain unbiased - the blue and

green areas continue to correspond to variation in y uniquely attributable to X and W,

respectively.

Figures 3a and 3b. Ballentine Venn diagrams displaying modest and considerable

collinearity.

Next ask the students what the higher collinearity does to the variance of the estimate

of β  (or β ). I go around the class and ask everyone to commit to increase, decrease,

no change, or don't know. Direct a discussion as above until everyone sees that
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because the blue area shrinks in size, less information is used to estimate β , and so

the variance of the OLS estimator of β  is larger.

In summary, it should now be clear that higher collinearity increases variance, but does

not cause bias. Finish by asking what happens in the diagram if X and W become

perfectly collinear - the blue and green areas disappear and estimation is impossible.

3.2 Omitting a Relevant Explanatory Variable

Return to , reproduced here as , specifying that both X and W affect y,

and ask how the properties of the OLS estimate of β  would be affected if W is omitted

from the regression, perhaps because a researcher isn't aware that it belongs, or has no

way of measuring it. There are three questions of interest here.

Figure 4. Ballentine Venn diagram.

First, is bias created whenever a relevant explanatory variable is omitted? I ask

everyone to commit to yes, no, or don't know. After this voting, discussion should

continue until everyone sees that if W is omitted the OLS formula uses the blue plus red

x
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area to estimate β , and so is clearly biased because the red area is contaminated

information. The direction of the bias cannot be determined from the diagram. Before

leaving this the instructor can ask under what special circumstance would no bias be

created? The students should be able to guess that when the X and W circles do not

overlap (that is, they are orthogonal, such as would be the case in a designed

experiment), there is no red area, so omission of a relevant explanatory variable will

not create bias.

Second, what can we say about the variance of the OLS estimator compared to when W

is included? I ask everyone to commit to larger, smaller, no change, or don't know. After

this voting, the discussion should continue until everyone sees that because the blue

plus red area information is used (instead of just the blue area information), more

information is being used, so that variance should be smaller. What if the omitted

explanatory variable W is orthogonal to X? In this case the OLS estimator continues to

use just the blue information, so variance is unaffected.

At this stage the instructor might want to note that by omitting a relevant explanatory

variable it should be clear that bias is created, a bad thing, but variance is reduced, a

good thing, and comment that the mean square error criterion becomes of interest here

because it is a way of trading off bias against variance. A good example to use here is

the common procedure of dropping an explanatory variable if it is highly collinear with

other explanatory variables. Ask the students how the results developed above could

be used to defend this action. They should be able to deduce that omitting a highly-

collinear variable can markedly reduce variance, and so may (but may not!) reduce the

mean square error.

Third, what can we say about our estimate of σ  (the variance of the error term)? I ask

everyone to commit to unbiased, biased upward, biased downward, or don't know. After

this voting, the discussion should continue until everyone sees that the OLS procedure

uses the magnitude of the yellow plus green area to estimate the magnitude of the

yellow area, so the estimate will be biased upward. The instructor can follow up by

asking if this bias disappears if the omitted explanatory variable W is orthogonal to X.

In summary, omission of a relevant explanatory variable in general biases coefficient

estimates, reduces their variances, and causes an overestimate of the variance of the

error term. If the omitted variable is orthogonal to the included variable, estimation

remains unbiased, variances are unaffected, but σ  is nonetheless overestimated.
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3.3 Detrending Data

Suppose W is a time trend. How will the β  estimate be affected if the time trend is

removed from y and removed from X, and then detrended y is regressed on detrended

X? This issue could be addressed by a voting procedure as described above, but I find it

better to structure a computer assignment to illustrate this problem. Have the students

obtain some data for y, X and W, ensuring that X and W are not orthogonal and that the

OLS slope coefficients on X and W are substantive. I have them use 30 years of

quarterly observations on a Canadian logged real monetary aggregate (y), logged real

gross domestic product (X), and a logged interest rate (W). All data can be found in the

CANSIM (www.statcan.ca/english/CANSIM) data base; data values have been logged to

reflect the functional form specification usually adopted in this context.

They are then told to perform the following three estimations, following which they are

asked to use the Ballentine Venn diagram to explain their results:

1. Regress y on X and W to obtain β , and its estimated variance vb .

2. Regress X on W, save the residuals r, and regress y on r to get c , the estimate of

the r coefficient, and its estimated variance vc .

3. Regress y on W, save the residuals s, and regress s on r to get d , the estimate of

the r coefficient, and its estimated variance vd .

With their data my students obtain results reported in .

Students are surprised that these three estimates b , c , and d  are identical to six

decimal points. Most can employ the Ballentine to create an explanation for this. First,

b  is the usual OLS estimate, resulting from using the information in the blue area in 

. Second, r is the part of X that cannot be explained by W, namely the orange

plus blue area. The overlap of these two areas is the blue area, so regressing the y

circle on the orange plus blue area uses the blue area information - exactly the same

information as for estimating b , so we should get an identical estimate. And third, s is

x

x
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Table 1. Results from estimating with residualized data.
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the part of y that cannot be explained by W, namely the blue plus yellow area. The

overlap between s and r is the blue area, so regressing s on r (the blue plus yellow on

the orange plus blue) uses the blue area information, once again exactly the same

information as for estimating b  and c . So this estimate should be identical to the other

two.

Figure 5. Ballentine Venn diagram.

Trouble begins when they try to explain the estimated variance results. Because exactly

the same information is being used to produce b , c  and d , they should all have

exactly the same variance. But in  the three numbers are different. Students

react to this in one of four different ways.

1. They ignore this problem, pretending that all they have to do is explain why the

slope estimates are identical. Or they don't realize that the three variances are

equal, and so believe that these differing numbers do not need comment.

2. They claim that all three numbers are identical except for rounding error.

* *
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3. They note that vb  and vd  are close enough that we can legitimately claim they

are identical except for rounding error, note that vc  is markedly higher, but are

unable to offer an explanation.

4. They realize that although the true variances are equal, the estimated variances

may not be equal, and use the Venn diagram to explain how this happens. When

estimating b  the variation in y not explained is the yellow area, so σ , the variance

of the error term, is estimated by the magnitude of the yellow area. Similarly, when

estimating d  (by regressing blue plus yellow on orange plus blue) the variation in

the dependent variable not explained is the yellow area, so in this case σ  is also

estimated by the magnitude of the yellow area. But in the case of estimating c  (by

regressing the entire y circle on orange plus blue) the variation in y not explained is

the yellow plus red plus green areas. As a result, in this case σ  is overestimated.

This overestimation causes vc  to be larger than vb  and vd .

Instructors may wish to supplement this explanation by noting that the formula for the

variance of an OLS estimator involves both σ  and variation in the explanatory variable

data which is “independent” of variation in other explanatory variables. (In this

example variance would be given by the formula σ (X M X) .) In all three cases here,

the “independent” variation in X is reflected by the blue plus orange areas, so the

relative magnitudes of the estimated variances depend entirely on the estimates of σ .

How does all this relate to regressing on detrended data? If W is a time trend, then s is

detrended y and r is detrended X, so that regressing s on r produces estimates identical

to those of regressing on raw data. One concludes that it doesn't matter if one

regresses on raw data including a time trend, or if one removes the linear trend from

data and regresses on detrended data. Similarly, if W is a set of quarterly dummies, it

doesn't matter if one regresses on raw data plus these dummies, or if one regresses on

data that have been linearly deseasonalized. More generally, this reflects the well-

known result that slope estimates are identical using raw data or appropriately

residualized data.

4. Conclusion

The Ballentine Venn diagram is not new to the literature. Kennedy (1998) exposits the

applications presented earlier, as well as discussing the implications of adding an
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irrelevant explanatory variable, and the rationale behind instrumental variable

estimation. In Kennedy (1989), the Ballentine is used to exposit tests for non-nested

hypotheses. The main contribution of this paper, beyond drawing readers' attention to

this use of Venn diagrams, is to describe some particularly effective ways of using this

diagram when teaching regression analysis.

There do exist special situations in which the Ballentine can mislead. For example, the

Ballentine erroneously suggests that the OLS slope estimates from regressing y on X

and W can be reproducing by the following procedure: obtain r by taking the residuals

from regressing X on W, obtain v by taking the residuals from regressing W on X, and

then regress y on r and v. My experience with its use in the classroom has been

overwhelmingly positive, however; confined to standard analyses, the advantages of

this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
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