```
Home > All Journals > Journal of Statistics Education > List of Issues > Volume 10, Issue 1
> More on Venn Diagrams for Regression
```


Journal of Statistics Education >

Volume 10, 2002 - Issue 1Free access
3,175 0
Views CrossRef citations to date Altmetric

Listen

Original Articles
More on Venn Diagrams for Regression
E. Kennedy Peter \sim
| Published online: 01 Dec 2017
66 Cite this article ∇ https://doi.org/10.1080/10691898.2002.11910547

El Full Article
Figures \& data
E) References

66 Citations
Lull Metrics

Reprints \& Permissions

```
* View PDF
```


Abstract

A Venn diagram capable of expositing results relating to bias and variance of coefficient estimates in multiple regression analysis is presented, along with suggestions for how it can be used in teaching. In contrast to similar Venn diagrams used for portraying results associated with the coefficient of determination, its pedagogical value is not compromised in the presence of suppressor variables.

1. Intr

In a enhancil inform r were no

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.

regression. Because these alternative applications are not new to the literature, the main contribution of this paper consists of suggestions for how this approach can be used effectively in teaching.

The first use of Venn diagrams in regression analysis appears to be in the textbook by Cohen and Cohen (1975). A major difficulty with its use occurs in the presence of suppressor variables, a problem discussed at length by $1 p$ (2001). No one denies that Venn diagrams can mislead, just as no one denies that ignoring friction in expositions of physical phenomena misleads, or using Euclidian geometry misleads because the surface of the earth is curved. Such drawbacks have to be weighed against the pedagogical benefits of the "misleading" expository device. As recognized by Ip, in the case of applying the Venn diagram to regression analysis, reasonable instructors could disagree on the pedagogical value of the Venn diagram because of the suppressor variable problem.

Ip's article is confined to the use of Venn diagrams for analyzing the coefficient of determination R^{2}, partial correlation, and sums of squares. In these cases, exposition is compromised in the presence of suppressor variables. But there are other concepts in regression analysis, thought by many to be of considerably more importance than R^{2}, which are not complicated by suppressor variables, the prime examples being bias and variance of coefficient estimates. This article presents a different interpretation of Venn diagrams, highlighting illustrations of bias and variance, and discusses how these diagrams can be used to enhance the teaching of multiple regression.

2. An Alternative Interpretation

Kennedy_(1981). extended the Venn diagram to the exposition of bias and variance in the cont the dep represer The fixed as devia the cruc

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.

\square

 蹅

\square

Accept All
Accept All

\qquad
\qquad

\qquad
\qquad號
\qquad

號 as

I begin by carefully explaining the interpretations of the areas in Figure 1 as described above. Following this I put up Figure 2 on the overhead and ask the class what will happen using OLS when there is more than one explanatory variable, drawing to their attention that it is not obvious what role is played by the red area. I note that if we were to regress y on X alone, OLS would use the information in the blue plus red areas to create its estimate of β_{x}, and if we were to regress y on W alone OLS would use the information in the green plus red areas to create its estimate of β_{w}. I present three options for the OLS estimator when y is regressed on X and W together.

- Continue to use blue plus red to estimate β_{x} and green plus red to estimate β_{w}.
- Throw away the red area and just use blue to estimate β_{x} and green to estimate β_{w}
- Divide the red information into two parts in some way, and use blue plus part of red
to estimate β_{x} and green plus the other part of red to estimate β_{w}.
I point out that several special cases of option c are possible, such as using blue and all of red to estimate β_{x} and only green to estimate β_{w}, or dividing red "equally" in some way.

After setting this up I inform students that they are to guess what OLS does, and ask them to vote for one of these options. (Voting has to be done one by one, because if the class at large is asked to vote, invariably nobody votes for anything; Kennedy. (1978) is an exposition of this pedagogical device.) I have never had a majority vote for the correct answer. Next I ask the class why it would make sense for an estimating procedure to throw away the information in the red area. (It is this throwing away of the

3. Teaching some Properties of OLS
 3. Teaching some Properties of OLS

I poin of red to estimate β_{x} and only green to estimate β_{w}, or dividing red equally" in some .
red area that allows this application of the Venn diagram to avoid being compromised \ldots good stı

- The in experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click
- If only "Settings". For further information about the data we collect from you, please see our Privacy Policy.

About Cookies On This Site

We and our partners use cookies to enhance your website
to $\because y$ inform g (
her" with
Essential Onl

Accept All

\qquad

seful, with

blue area corresponds to variation in y uniquely attributable to X and the green area corresponds to variation in y uniquely attributable to W .

An instructor may wish to elaborate on point b by noting that the variation in y in the red area is actually due to joint movements in X and W because the red area corresponds to X and W "moving together" as well as to y and X moving together and y and W moving together. Suppose that in the red area when X changes by one W changes by two, so that a joint movement of one by X and two by W gives rise to a movement in y of $\beta_{x}+2 \beta_{w}$. If $\beta_{x}=5$ and $\beta_{w}=7$, this would be a movement of 19. If we were to match this 19 movement in y with a unit movement in X we would get a β_{x} estimate badly off the true value of $\beta_{x}=5$. When this is combined with the unbiased estimate coming from the blue area information, a biased estimate results. Similarly, if the 19 movement in y were matched with a two movement in W we would get an estimate of 9.5 for β_{w}, badly off its true value of 7 .

Instructors presenting an algebraic version of this material can demonstrate this result by working through the usual derivation of the OLS estimate of β_{x} as $\left(X^{* t} X^{*}\right)^{-1} X^{*} y^{*}$ where $y^{*}=M_{w} y$ and $X^{*}=M_{w} X$ with $M_{w}=I-W\left(W^{t} W\right)^{-1} W^{t}$. The residualizing matrix M_{w} removes that part of a variable explained by W, so that, in Figure $2, y^{*}$ and X^{*} are represented by areas blue plus yellow and orange plus blue, respectively; the OLS estimate results from using the information in their overlap, the blue area. This matrix formulation reveals how the case of three rather than two explanatory variables would be analyzed. Let X represent a single explanatory variable and W represent a matrix of observations on Z and Q, the other two explanatory variables. The W circle in the Venn diagram now represents the union of the Z and Q circles.

The instructor can finish by noting that the yellow area in Figure 2 represents the magnitude of σ^{2}, the variance of the error term. The OLS estimating procedure uses the

About Cookies On This Site

We and our partners use cookies to enhance your website
Accept Âll imate of σ^{2}.
experience, learn how our site is used, offer personalised
tself on the features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click

Settings

 "Settings". For further information about the data we collect from you, please see our Privacy Policy.Accept All
ce，but does come

Essential Onl？possible．

Settings

is omitted

\square

[^0]$$
\square
$$
■

 ．
$$
>
$$
■

Abstract

$$
\gamma
$$

\qquad

蹅都
 \rangle是號

[^1]information is being used, so that variance should be smaller. What if the omitted explanatory variable W is orthogonal to X? In this case the OLS estimator continues to use just the blue information, so variance is unaffected.

At this stage the instructor might want to note that by omitting a relevant explanatory variable it should be clear that bias is created, a bad thing, but variance is reduced, a good thing, and comment that the mean square error criterion becomes of interest here because it is a way of trading off bias against variance. A good example to use here is the common procedure of dropping an explanatory variable if it is highly collinear with other explanatory variables. Ask the students how the results developed above could be used to defend this action. They should be able to deduce that omitting a highlycollinear variable can markedly reduce variance, and so may (but may not!) reduce the mean square error.

Third, what can we say about our estimate of σ^{2} (the variance of the error term)? I ask everyone to commit to unbiased, biased upward, biased downward, or don't know. After this voting, the discussion should continue until everyone sees that the OLS procedure uses the magnitude of the yellow plus green area to estimate the magnitude of the yellow area, so the estimate will be biased upward. The instructor can follow up by asking if this bias disappears if the omitted explanatory variable W is orthogonal to X .

In summary, omission of a relevant explanatory variable in general biases coefficient estimates, reduces their variances, and causes an overestimate of the variance of the error term. If the omitted variable is orthogonal to the included variable, estimation remains unbiased, variances are unaffected, but σ^{2} is nonetheless overestimated.

3.3 Detrending Data

Suppose W is a time trend. How will the β_{x} estimate be affected if the time trend is
remover
X? This i
better to
obtain
OLS $\because=\%$
quarten gross do CANSIM

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.
detrended but I find it he students

Essential Onl and that the s of ogged real ound in the logqed to

They are then told to perform the following three estimations，following which they are asked to use the Ballentine Venn diagram to explain their results：

1．Regress y on X and W to obtain β_{x} ，and its estimated variance $v b^{*}$ ．
2．Regress X on W ，save the residuals r ，and regress y on r to get c^{*} ，the estimate of the r coefficient，and its estimated variance $v c^{*}$ ．

3．Regress y on W ，save the residuals s ，and regress s on r to get d^{*} ，the estimate of the r coefficient，and its estimated variance $v d^{*}$ ．

With their data my students obtain results reported in Table 1.
Table 1．Results from estimating with residualized data．

Students are surprised that these three estimates b^{*}, c^{*} ，and d^{*} are identical to six decimal points．Most can employ the Ballentine to create an explanation for this．First， b^{*} is the usual OLS estimate，resulting from using the information in the blue area in Figure 5 ．Second，r is the part of X that cannot be explained by W ，namely the orange plus blue area．The overlap of these two areas is the blue area，so regressing the y circle on the orange plus blue area uses the blue area information－exactly the same information as for estimating b^{*} ，so we should get an identical estimate．And third，s is the part of y that cannot be explained by W ，namely the blue plus yellow area．The overlap between s and r is the blue area，so regressing s on r（the blue plus yellow on the orange plus blue）uses the blue area information，once again exactly the same information as for estimating b^{*} and c^{*} ．So this estimate should be identical to the other

Accept All
\section*{Accept An}

\square
\square
號

正
\qquad都 r

$$
\square
$$號

.

[^2] conam
\square
$$
\pi
$$

Display full size

Trouble begins when they try to explain the estimated variance results. Because exactly the same information is being used to produce b^{*}, c^{*} and d^{*}, they should all have exactly the same variance. But in Table 1 the three numbers are different. Students react to this in one of four different ways.

1. They ignore this problem, pretending that all they have to do is explain why the slope estimates are identical. Or they don't realize that the three variances are equal, and so believe that these differing numbers do not need comment.
2. They claim that all three numbers are identical except for rounding error.
3. They are id unable About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.

Essential Onl

riances

variance
arly, when
the dependent variable not explained is the yellow area, so in this case σ^{2} is also estimated by the magnitude of the yellow area. But in the case of estimating c^{*} (by regressing the entire y circle on orange plus blue) the variation in y not explained is the yellow plus red plus green areas. As a result, in this case σ^{2} is overestimated. This overestimation causes $\mathrm{vc}{ }^{*}$ to be larger than vb^{*} and $\mathrm{vd}{ }^{*}$.

Instructors may wish to supplement this explanation by noting that the formula for the variance of an OLS estimator involves both σ^{2} and variation in the explanatory variable data which is "independent" of variation in other explanatory variables. (In this example variance would be given by the formula $\sigma^{2}\left(X^{t} M_{w} X\right)^{-1}$.) In all three cases here, the "independent" variation in X is reflected by the blue plus orange areas, so the relative magnitudes of the estimated variances depend entirely on the estimates of σ^{2}.

How does all this relate to regressing on detrended data? If W is a time trend, then s is detrended y and r is detrended X, so that regressing s on r produces estimates identical to those of regressing on raw data. One concludes that it doesn't matter if one regresses on raw data including a time trend, or if one removes the linear trend from data and regresses on detrended data. Similarly, if W is a set of quarterly dummies, it doesn't matter if one regresses on raw data plus these dummies, or if one regresses on data that have been linearly deseasonalized. More generally, this reflects the wellknown result that slope estimates are identical using raw data or appropriately residualized data.

4. Conclusion

The Ballentine Venn diagram is not new to the literature. Kennedy_(1998) exposits the applications presented earlier, as well as discussing the implications of adding an irrelevar estimati hypothe this

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect Accept Âll ble

There dc Ballentir from you, please see our Privacy Policy.
ample, the
ig y on X
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References

1. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
2. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
3. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
4. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
5. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
6. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
7. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
8. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
Google Scholar
9. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
10. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
11. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
12. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
13. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
14. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
Google Scholar
15. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
16. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
17. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
Google Scholar
18. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
19. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
20. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
21. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
22. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
23. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
Google Scholar
24. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
25. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
26. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
27. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique,"
overwhelmingly positive, however; confined to standard analyses, the advantages of
this Venn diagram interpretation as a pedagogical device are too powerful to ignore.
References
28. Cohen, J., and Cohen, P. (1975), Applied Multiple Regression/Correlation Analysis for
the Behavioral Sciences, Hillside, NJ: Lawrence Erlbaum Associates.
Google Scholar
29. Ip, E. H. S. (2001), "Visualizing Multiple Regression," Journal of Statistics Education
[Online], 9 (1). (ww2.amstat.org/publications/jse/v9n1/ip.html)
Google Scholar
30. Kennedy, P. E. (1978), "Democlass: A Variation on the Question/Answer Technique," Journal of Economic Education, 9, 128-130.
31. Kennedy, P. E. (1981), "The ‘Ballentine': A Graphical Aid for Econometrics," Australian Economic Papers, 20, 414-416.

Web of Science ${ }^{\circledR}$ Google Scholar
5. Kennedy, P. E. (1989), "A Graphical Exposition of Tests for Non-nested Hypotheses," Austré

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click

Abstract

from regressing X on W, obtain v by taking the residuals from regressing W on X, and then regress y on r and v. My experience with its use in the classroom has been

保

```
#
```

\qquad-

Web of Science ${ }^{\circledR}$ Google Scholar

\square
 -

 .

 .
,

\qquad
\qquad
\square
保

Related research ©

People also read

Visualizing Multiple Regression >

Edward H. S. Ip
Journal of Statistics Education
Published online: 1 Dec 2017

Estimators of Relative Importance in Linear Regression Based on Variance Decomposition >

Ulrike Grömping
The American Statistician
Published online: 1 Jan 2012

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy

Information for

Authors

R\&D professionals
Editors
Librarians
Societies

Opportunities

Reprints and e-prints
Advertising solutions
Accelerated publication
Corporate access solutions

Open access
Overview
Open journals
Open Select
Dove Medical Press
F1000Research
Help and information
Help and contact
Newsroom
All journals
Books

Keep up to date
Register to receive personalised research and resources by email

Sign me up

Copyright © 2024 Informa UK Limited Privacy policy Cookies Terms \& conditions

About Cookies On This Site

Accept All

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click

[^0]:

[^1]: 號

[^2]:

