Home ▶ All Journals ▶ Journal of Receptors and Signal Transduction ▶ List of Issues ▶ Volume 28, Issue 1-2 ► Metabolic Roles of the M3 Muscarinic Ace

Journal of Receptors and Signal Transduction > Volume 28, 2008 - Issue 1-2

416 40

Views CrossRef citations to date Altmetric

Research Article

Metabolic Roles of the M₃ Muscarinic Acetylcholine Receptor Studied with M₃ Receptor Mutant Mice: A Review

DINESH GAUTAM, JONGRYE JEON, JIAN HUA LI, SUNG-JUN HAN, FADI F. HAMDAN, YINGHONG CUI, ... show all

Pages 93-108 | Published online: 10 Oct 2008

66 Cite this article

https://doi.org/10.1080/10799890801942002

Sample our Medicine, Dentistry, Nursing >> Sign in here to start your access to the latest two volumes for 14 days

Full Article

Figures & data

References

66 Citations

Metrics

➡ Reprints & Permissions

Read this article

Abstract

The M₃ muscarinic acetylcholine (ACh) receptor (M₃ mAChR) is expressed in many central and peripheral tissues. It is a prototypic member of the superfamily of G protein-coupled receptors and preferentially activates G proteins of the G_{α} family.

Recent studies involving the use of newly generated mAChR mutant mice have

revealed

function

overexp

esse expel

β -cell M

studies

receptor

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy

metabolic Accept All Essential OnlandChRs are ling through Settings Recent e of Ma

cally

induced obesity and obesity-associated metabolic deficits. Under all experimental conditions tested, M₃ receptor-deficient mice showed greatly ameliorated impairments in glucose homeostasis and insulin sensitivity, reduced food intake, and a significant elevation in basal and total energy expenditure, most likely due to increased central sympathetic outflow and increased rate of fatty acid oxidation. These findings are of potential interest for the development of novel therapeutic approaches for the treatment of obesity and associated metabolic disorders.

Q Key Words: : Glucose homeostasis Insulin Knockout mice Muscarinic receptor Transgenic mice

Related research

People also read Recommended articles Cited by

Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition) >

Daniel J Klionsky et al.

Autophagy

Published online: 21 Jan 2016

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 >

Daniel J. Klionsky et al.

Autophagy

Published online: 8 Feb 2021

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy

Accept All

Essential Only

Settings

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

Copyright © 2024 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

Registered in England & Wales No. 3099067 5 Howick Place | London | SW1P 1WG

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy

Essential Onl

Settings