

Q

Volume 33, 2015 - Issue 12

945 | 74

Views | CrossRef citations to date | Altmetric

Original Articles

Effects of Nanoparticle Types on Carbon Dioxide Foam Flooding in Enhanced Oil Recovery

Abstract

Enhancement of foam stability has been recently evidenced with addition of nanoparticles (NPs), especially in the case of CO_2 foams. Stabilized foams via solid NPs can potentially withstand high reservoirs temperatures. Studies have been conducted to examine the effect of NPs on foam stability; however, more research is required for various types of NPs. Therefore, the authors aimed to investigate the performance of silicon dioxide (SiO₂), aluminum oxide (Al₂O₃), copper oxide (CuO), and titanium dioxide (TiO₂) of different sizes in the presence of fixed concentration of anionic surfactant (AOS) on foam stability. Nano particle concentrations of (0.1 wt%, 0.3 wt%, 0.5 wt%, and 1 wt%) were used to investigate the foam stability, displacement test were performed to determine oil recovery at the optimum concentrations for each nanoparticle. The stability of the aqueous foam was evaluated by the Ross-Miles

method using half-life measurements. All experiments were conducted at room temperature and pressure. The results revealed that all different NPs used were able to improve the stability of CO_2 foam at certain concentrations. However, aluminum oxide NPs showed better results compared to others in terms of foam stability and half-life time. In addition, 0.1 wt% of all NPs types gave the highest foam stability and half-life time. In conclusion, a low concentration of NPs is recommended regardless of type for improving form stability.

Keywords:

foam stability nanoparticle enhanced oil recovery immiscible flooding surfactant

Related research 1

People also read Recommended articles Cited by 74

The Incorporation of Silica Nanoparticle and Alpha Olefin Sulphonate in Aqueous CO2 Foam: Investigation of Foaming Behavior and Synergistic Effect >

F. AttarHamed et al.

Petroleum Science and Technology Published online: 2 Sep 2014

A review of mechanisms influencing stable rheology complex Pickering foams for carbon utilization & storage in subsurface formations >

Krishna Raghav Chaturvedi et al.

Petroleum Science and Technology Published online: 14 Dec 2023 Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

Accessibility

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG