

The European Journal of Finance >

Volume 12, 2006 - Issue 6-7: Forecasting Financial Markets

924 | 101 | 0
Views | CrossRef citations to date | Altmetric

Original Articles

Small sample properties of GARCH estimates and persistence

Soosung Hwang & Pedro L. Valls Pereira

Pages 473-494 | Published online: 28 Nov 2010

Cite this article <https://doi.org/10.1080/13518470500039436>

Sample our
Area Studies
Journals
 >> **Sign in here** to start your access
to the latest two volumes for 14 days

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

Abstract

It is shown that the ML estimates of the popular GARCH(1,1) model are significantly negatively biased in small samples and that in many cases converged estimates are not possible with Bollerslev's non-negativity conditions. Results also indicate that a high level of persistence in GARCH(1,1) models obtained using a large number of observations has autocorrelations lower than these ML estimates suggest in small samples. Considering the size of biases and convergence errors, it is proposed that at least 250 observations are needed for ARCH(1) models and 500 observations for GARCH(1,1) models. A simple measure of how much GARCH conditional volatility explains squared returns is proposed. The measure indicates that for a typical index return volatility whose ARCH parameter is very small, the conditional volatility hardly explains squared returns.

Keywords:

Acknowledgements

We would like to thank Gordon Gemmill, Mark Salmon, Stephen E. Satchell, and the participants of the 2003 Forecasting Financial Markets Conference for their helpful comments. The second author acknowledges the financial support from CNPq, Ibmec Business School and PRONEX. All remaining errors are our responsibilities.

Notes

¹See Drost and Nijman ([1993](#)) for further discussion of this topic.

²The general properties of small sample estimates in GARCH models are known in econometrics—Engle et al. ([1985](#)), Bollerslev ([1988](#)), Diebold and Pauly ([1989](#)), and Baillie and Chung ([2001](#)). However, they are not well known in applied areas such as finance and economics. In addition, the effects of Bollerslev's ([1986](#)) non-negativity conditions on bias and convergence errors in small samples are rarely investigated. Many variations of GARCH models (IGARCH, EGARCH, GARCH with t-distribution, etc.) could be used. However, we believe that the estimates of these variations would show similar properties in small samples to those of the standard ARCH and GARCH models.

³We also tried $\{0.7, 0.05\}$, $\{0.3, 0.05\}$, $\{0.05, 0.7\}$, and $\{0.05, 0.3\}$ with Bollerslev's non-negativity conditions, but did not find any local maxima.

⁴We only consider the cases that the standardized residuals are normal. Simulations with other probability density functions could be considered. See Baillie and Chung ([2001](#)), for example.

⁵We used a few different algorithms to see if there were any changes in convergence errors, but found little difference.

⁶We also estimated ARCH(1) and GARCH(1,1) models for the FTSE100 daily log-returns using the same method as described in this section and found similar results. The results are not reported here, but can be obtained from the authors upon request.

⁷See Nelson ([1991](#)), who raises this point.

⁸This is a reason why unit root tests are affected by the presence of MA components; see the simulation results of Phillips and Perron ([1988](#)) and Schwert ([1989](#)).

⁹The same experiments as those for GARCH models were carried out for SV models for the S&P500 index log-squared returns. The results are consistent with what we found in [table 2](#) and can be obtained from authors by request.

¹⁰Andersen and Bollerslev ([1998](#)) calculate the population R^2 of the ex-post squared return - GARCH(1,1) volatility regression which is $\alpha^2/(1 - \beta^2 - 2\alpha\beta)$. Their results are not different from Theorem 1 in the sense that for realistic parameter values of α and β , R^2 is very low and GARCH(1,1) does not explain squared returns well.

¹¹See Equation 4 in the previous section for the autocorrelations of ARCH(1) and GARCH(1,1) models.

Related research

People also read

Recommended articles

Cited by
101

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

 Taylor and Francis Group

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG