

Philosophical Magazine >

Volume 86, 2006 - Issue 32

456 | 45
Views | CrossRef citations to date | Altmetric

Original Articles

Microstructure, indentation and work hardening of Cu/Ag multilayers

M. Verdier✉, H. Huang✉, F. Spaepen, J. D. Embury & H. Kung

Pages 5009-5016 | Received 20 Jan 2006, Accepted 29 Mar 2006, Published online: 19 Aug 2006

✉ Cite this article | <https://doi.org/10.1080/14786430600746440>

Sample our
Physical Sciences
Journals

>> [Sign in here](#) to start your access
to the latest two volumes for 14 days

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

Abstract

Instrumented indentation and tensile tests were performed on free standing Cu/Ag multilayer thin films with layer thicknesses in the range 0.85–900 nm. The effect of layer thickness can be described by a Hall-Petch relationship. The work-hardening rate in the tensile test depends on layer thickness, which indicates that the interfaces create storage sites for dislocations and follows an inverse power law.

Acknowledgments

Los Alamos National Laboratory and NSERC Canada are acknowledged for financial support. The work at Harvard was supported by the Harvard Materials Research Science

and Engineering Center under contract number DMR 98-09363. H.H. acknowledges support from an AlliedSignal predoctoral fellowship.

Notes

§Present address: LTPCM (CNRS UMR 29), Domaine Universitaire, BP75 38402, St. Martin d'Héres Cedex, France.

¶Present address: General Atomic, Internal Fusion Technology Division, San Diego, CA, USA.

Additional information

Notes on contributors

M. Verdier§

§Present address: LTPCM (CNRS UMR 29), Domaine Universitaire, BP75 38402, St. Martin d'Héres Cedex, France.

H. Huang¶

¶Present address: General Atomic, Internal Fusion Technology Division, San Diego, CA, USA.

Related Research Data

[On dislocation storage and the mechanical response of fine scale microstructures](#)

Source: *Acta Metallurgica et Materialia*

[Recovery of AlMg alloys: flow stress and strain-hardening properties](#)

Source: *Acta Materialia*

[Plastic Behaviour of Cu / Ni Multilayers](#)

Source: *MRS Proceedings*

[Dislocation-Density-Related Constitutive Modeling](#)

Source: Unknown Repository

Measurements of stress during vapor deposition of copper and silver thin films and multilayers

Source: Journal of Applied Physics

Elastic and plastic properties of thin films on substrates: nanoindentation techniques

Source: Materials Science and Engineering A

Physics and phenomenology of strain hardening: the FCC case

Related research

People also read

Recommended articles

Cited by
45

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG