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Abstract

While the scientific community recognizes the benefits of DC power transfer, the

distribution network operators point out the practical and economic constraints in

refurbishing the existing AC network at a medium-voltage level. Some apprehensions

like reliability, cost of ownership, and safety in adopting a universal DC distribution may

merit considerable attention, particularly considering the long operational experience

with the existing mature AC system. This paper introduces the novel concept of

reconfigurable DC links as a flexible backbone integrated within the future AC

distribution grids. Benefits such as hardware reconfiguration for a modular AC–DC cable

operation to achieve fault redundancy, control reconfiguration for flexibility and grid-

supporting ancillary services, network reconfiguration for system level distribution loss

minimization and load redistribution, and fault reconfiguration for improving the grid

availability are discussed. The vision, around which the concepts developed in this
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paper revolve around, is to present a viable way of gradual transition from AC to hybrid

AC–DC to finally a universal DC system.

Keywords::

AC DC distribution grids reconfiguration flexibility restructure

1. Introduction

Increasing integration of dispersed renewable energy sources in existing electricity

supply systems has enabled bidirectional power flows in the AC distribution networks.

New energy consumers like electric vehicles, all electric houses, and heat pumps have

changed the localized energy consumption patterns and increased the expected

demand from grid infrastructure several folds [1, 2]. Infrastructural complexity and

investment costs are required for maintaining sufficient and optimized power flows to

cope with localized demand deficits and quality of supply at acceptable voltage

deviations. The distribution network operators should have adequate flexibility and

control on the grid operation. Reconfigurable DC links incorporated in the existing AC

distribution grids can provide solutions to the challenges highlighted in the subsequent

section. DC links can provide all the advantages of DC transmission systems [3] like

lower losses at critical highly loaded points, higher transmission capacity, bidirectional

power control, and grid interconnectivity with distributed energy sources and storage,

while offering a flexibility of reverting to the AC operation during contingencies such as

converter faults. Furthermore, control functionalities programmed into the link

converters can offer more flexibility and redundancies during an integrated grid

operation. In , the challenges faced by AC network utility operators are listed

and the corresponding opportunities with DC-based technologies are highlighted.

Table 1

TABLE 1. Challenges in existing AC grids and opportunities for

DC-based system.
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The subsequent section elaborates on these challenges and opportunities. Then, the

new concepts developed in this paper are presented and their potential is identified by

reviewing the existing conventional practices. Finally, the limitations of the DC link

technology and the means of mitigating them are discussed.

2. Challenges and Opportunities

2.1. Increase in Power Demand

A shift toward electric energy from traditional fossil fuel use in vehicles and heat pumps

may trigger the need to enhance the capacity of existing distribution grids [4].

• Electric vehicles (EVs) have high charging power demand. User behaviour of

charging the EVs at certain scheduled time of the day could create local overload

on the grid even though the installed capacity is enough for average loading

conditions [25].

• Interest in adopting all-electric houses has increased the reliance on electrical

energy [26]. Some DNOs expect a significant hike in demand on their grid

infrastructure if electrical heat pumps are used instead of conventionally used

gas pipes.

FIGURE 1. Capacity enhancement with 3 × monopolar DC links from a three-phase AC

link operating at a unity power factor.

Display full size
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At a medium-voltage level of 10–66 kV, the transmission lines which bring the bulk

power into the city collecting center from the central substation as shown in 

are at maximum loading conditions. The downline changes in loading pattern seldom

take into account the consequences on this critical link. The reactionary responsibility

of infrastructure overhauling falls on the DNOs. In case of overhead lines, modification

to dc transmission can have considerable increase in power transmission capacity [27]

Similarly, with use of dc links, the power transfer capacity of existing underground

cable infrastructure can be significantly enhanced [4] as shown in . A detailed

quantification of capacity enhancement under different scenarios is offered in [28].

FIGURE 2. Reconfigurable DC links for bulk power transmission into the city collection

center.

Interaction with utility operators indicates that most of the transmission losses in the

distribution grid occur in these first few kilometers of the distribution grids. Therefore,

employing DC links at these locations can also be beneficial in terms of efficiency

enhancement. However, these are critical points of the distribution grids where a fault

can cause outage of the entire city. Therefore, redundancy offered by the

reconfigurability of the DC link can be advantageous.

3. Integrating Green Energy Resources

At a low-voltage distribution level, emerging grid components will need to be integrated

into an AC or DC interconnection while carrying out the designated role in energy

generation, storage, consumption, and protection. The power electronic interface of

winds turbines, fuel cells, and PV modules with an existing AC microgrid is discussed in

[5]. In [6], a comparative analysis on the component integration with AC and DC

microgrids is performed. It is recognized that these components are inherently DC, or

Figure 1

Figure 2
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require an intermediate AC–DC–AC conversion stage. A DC interconnection can lead to

the reduction in a conversion stage, thereby improving the efficiency. The creation of

flexible DC nano-grids controlled independently in a distributed way and interconnected

via a DC grid in an open energy system may lead to de-congestion and solve problems

of intermittent nature of generation locally [7, 10].

3.1. Meshing and Redundancies

The ability to revert to AC when the DC link operation fails during contingency is an

important requirement, particularly at critical locations of bulk power transfer.

Therefore, the architecture proposed is hardware-reconfigurable with the possibility of

operating in both AC and DC.

An advantage of interconnecting different grid locations, thereby creating active closed

loop grid architectures, is anticipated to fundamentally change how the future power

grids will be designed and operated. The concepts such as network and fault

reconfiguration of existing AC networks using optimally placed DC links are a

pioneering focus of this paper.

3.2. Operational Flexibility

Big data applications in power utilities appear to be the next logical step toward

smarter grids [9]. Unlike Internet, the “Internet of things” envisioned in [10] can reach

its full potential only with greater hardware interconnectivity. We argue that

reconfigurable DC links will invariably lead to greater grid interconnectivity. As the data

volume increases, the attention will shift from information architecture and

management toward decisions of optimal operation. Anticipating this, the control

reconfigurability using flexible DC link backbones may be the natural and necessary

evolutionary paths for the future power system architecture at its physical layer.

4. Novel Concept of Reconfigurable DC Links

This paper proposes novel concepts of employing reconfigurable DC links in existing AC

distribution grids. Toward the vision of gradually transitioning from existing AC to a

universal DC distribution, the following ideas are developed:

• Hardware reconfigurability for modular AC–DC cable operation to achieve fault
 Article contents  Related research



redundancy at critical grid locations.

• Control reconfigurability for greater flexibility and grid-supporting ancillary

services.

• Network reconfigurability for loss minimization and feeder load redistribution

using DC links.

• Fault reconfigurability for achieving higher availability.

This section explores the potential of these ideas further and supports their viability by

highlighting the current and anticipated limitations of conventional AC utility grid

architecture, control, and practices.

4.1. Hardware Reconfigurability

 depicts one of the hardware system reconfigurations that can work as a bipolar

DC link as well as revert to a three-phase AC operation during converter faults by a

modular repair scheme. In this scheme, the three core cables operate as a bipolar DC

link under normal operational conditions. Two of the cables can be fully loaded, while

one is either redundant or acts as a return path as shown in . During

converter faults, which are the least reliable part of the system, the circuit breakers on

the AC side open and the faulted components can be modularly removed as shown in 

. The system can revert back to a three-phase three-line AC operation as

shown in  by closing the isolator and reclosing the circuit breakers at both

sides.

FIGURE 3. Hardware reconfiguration for a modular AC–DC operation of underground

cables.

Figure 3

Figure 3(a)

Figure 3(b)

Figure 3(c)
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In this way, we not only achieve a flexible and modular AC–DC operation by reusing the

same underground cable infrastructure, but also save costs by common use of the

circuit breakers for both operating modes. The isolators are cheaper and used only for

AC connection, and remain normally open during the DC operation. These isolators are

not operated to make or break cable current, which is done using the commonly

connected circuit breakers. The consequences of refurbishing the underground AC cable

to operate under DC conditions are discussed in [4].

4.2. Network Reconfiguration

The idea of reconfiguring the conventional AC network by redirecting power from one

feeder to another to achieve system level loss minimization and load balancing is

proposed in [11, 12]. Recently, a similar study presents the benefits for variable load

demand [13]. However, in such an AC network restructuring concept, the constraint of

maintaining the radial structure must be kept, due to the synchronization requirements.

The advantages of a radial distribution network and the possibility of loss minimization

and service restoration using reconfiguration have led to the design of weakly meshed
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grids which are then operated in a radial mode and restructured using switching

operations through efficient optimization techniques [14]. While such techniques of

branch exchanges for the network reconfiguration have been explored extensively in

the literature, the radial constraint is respected in all such studies [11–16].

Interestingly, it was noted as an afterthought in [16] that if a network configuration

with a limited number of loops could be allowed, substantial reduction of resistive line

losses over those of the optimum radial configuration may also be achieved.

Considering that at the distribution level, a looped operation was unfavorable for AC,

this was never explored further.

Considering that the point-to-point DC links can asynchronously interconnect two AC

grid locations, it can be easily appreciated that the benefits of “radial” AC operation

and network reconfiguration for loss minimization, load balancing, service restoration,

and reactive power support using a flexible DC link backbone can be combined [24].

The An optimal placement of dc links in existing ac distribution networks can be

beneficial, as illustrated in .

FIGURE 4. Network restructuring using reconfigurable DC links.

Figure 4
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Trade-offs in terms of cost of front and back convertors for DC links and their operating

losses are added constraints, while new benefits such as rapid response, better control,

efficient cable operation, enhancement in power transfer capability, and flexibility with

ancillary services like harmonic elimination, power redirection, and voltage support

should be incorporated in future problem formulations in this field.

The most interesting potential of this concept is the scalability of a multi-terminal DC

skeleton within the existing AC grid, integrating distributed generation resources and

energy-intensive consumers to achieve a “Grid within a grid,” therefore, paving way for

the vision of realistically transitioning toward a universal DC distribution in a systematic

way, as illustrated in .

4.3. Fault Reconfigurability

The hybrid AC/DC medium-voltage system has great advantages over conventional AC

distribution systems. In the conventional AC system, the tie switches are usually used

to achieve service restoration once the fault occurs. This existing fault mitigation

strategy has some disadvantages. First, after the fault is isolated, the downstream

loads would be interrupted before they are reenergized by another feeder. Second, the

new network topology caused by the closing of tie switch will cause high system losses

and poor voltage profiles along the feeder since the closing of tie switch makes the

main feeder much longer. The healthy radial AC system with a single point-to-point

reconfigurable DC link is shown in .

FIGURE 5. Fault coordination with reconfigurable DC links.

Figure 4

Figure 5(a)
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In case (b), when fault F1 occurs between R12 and R13, that section is isolated and the

nodes from R13 and end point are fed by closing the NO tie-line. The DC link converters

generally have a fault ride through capability and can remain in operation. In this case,

there is not much difference as compared to the system without the DC link, apart from

the fact that the performance can be better due to inherent tolerance to over-currents

and the capability to support the node voltage.

In case (c), when fault F2 occurs near the main bus, the DC link can provide supply to a

downstream node and it is not necessary to switch in the tie-line. Apart from reducing

the number of switching operations, this scenario also results in a better voltage profile

and lower losses. It also does not result in a change in the current direction, which is an

issue with an over-current relay coordination discussed in [15].

Similarly, in case (d), fault F3 can be isolated without interrupting the supply to other

loads and avoiding the need to operate the tie-line. Therefore, it can be concluded that

any fault between the main bus and the DC link end will reduce the tie-line operation

and the losses, while improving the overall voltage profile. For faults between the DC

link end and the tie-line, the fault ride through can guarantee a similar better

performance than the original system.

It is also important to consider the constraints' relay coordination (R11–R14 and R21–

R24) which is applied to the network reconfigurability. In the conventional radial system

reconfiguration by branch exchange, this coordination necessitates the avoidance of

some branch operations [15]. In approaching the optimization problem with DC link

placement, this constraint is also not relevant, thereby allowing more choices.

4.4. Control Reconfigurability

• DC links can be reconfigured to provide interconnectivity between one phase of

the grid to another phase of the grid geographically located away from each

FIGURE 6. Phase-to-phase interlinking with reconfigurable DC links.
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other as shown in . In case there is excess generation due to distributed

sources in phase a1 in one part of the grid and local power deficit due to high

demand in phase c2 in another part, the power can be redirected easily,

efficiently, and rapidly by reconfiguring the converters without synchronization

issues. This redirection may be beneficial in low-voltage microgrids with local

pockets of power surplus and deficits. An adequate control algorithm for the DC

links can offer flexibility in the operation of the distribution grid.

• If a bipolar configuration is employed, the system can be reconfigured to operate

in a monopolar mode for limited time [1] with 50% capacity during single-line

faults.

• Flexible operation of link converters as STATCOM for reactive power injection and

harmonic elimination when the link is operating under AC conditions.

5. Limitations in Employing Reconfigurable DC Link Technology

Given the less mature market for DC technologies, particularly in terms of DC breakers

[17] and minimal penetration of DC transmission in MV/LV distribution grids, point-to-

point connections as a flexible backbone to the AC network are preferable as the

starting point. To have more meshed interconnection and renewable energy integration

toward the transition to DC grids, the following limitations must be addressed:

• High infrastructure costs associated with the link converter will always need to

be balanced against savings due to capacity and efficiency enhancement, and

the flexibility offered by the DC operation.

• Protection continues to remain a bottleneck. The DC link suffers from high short

circuit currents due to the absence of inductive drop. In general, there is a trade-

off between stability and short circuit current limit with respect to the

capacitance of the DC link.

• Power electronic converters installed near residential areas can be a source of

noise. Multi-level converter operating with frequencies beyond 20 kHz can be

used for noiseless operations.

• Converters are the least reliable components in the proposed system. Outage

due to fault can increase the grid downtime. With the use of modular converters,

this downtime can be reduced. Furthermore, redundancies due to

Figure 6
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reconfigurability of the DC link, as suggested in this paper, will improve reliability

and ensure uninterrupted operations during contingencies.

Protection

A reliable and coordinated protection strategy is perhaps the greatest hindrance toward

a truly interconnected meshed DC network [6]. DC links can prevent AC faults from

affecting other parts of the AC grid. However, the use of switches, which are prone to

failure, and the nature of the DC current itself make protection one of the biggest

challenges in DC links. So far, DC point-to-point connections have only been protected

via the use of AC breakers. This is also the reason why we limit ourselves in highlighting

the potential of point-to-point reconfigurable DC links. In the case of Line-Commutated

current-sourced convertors technology, the thyristor valves can block their operation

and thus prevent the AC side from feeding the DC fault. However, this is not possible in

the case of voltage-sourced convertors. As soon as a fault occurs, the control is blocked

and the converter operates as a diode bridge continuously feeding the fault until a

means of isolation is activated. Unless a DC grid is in place, no fast DC fault isolation is

required, as the faulty DC line can no longer assist the normal power flow and it will

need to be shut down for maintenance [18].

The problem of protection becomes more prominent in the case of meshed DC grids. In

this case, the faulty line needs to be isolated fast enough to prevent the fault from

affecting the operation of the “healthy” part of the grid. As soon as a DC fault occurs,

there are three distinct stages of grid reaction. First, the DC fault needs to be detected.

Second, the grid assets need to be protected and the fault needs to be isolated before

the fault currents reach a critical level. Finally, the operation should be restored as soon

as possible in the grid part that is not affected by the fault, minimizing the overall

economic losses [19].

Previous research has been conducted on the DC fault currents developing stages, as

well as on DC fault selective detection and localization methods [18]. These studies

showed that the DC fault dynamics are very fast (2–5 msec) and thus, the time

restrictions imposed are very stringent. Moreover, several studies have investigated the

design of DC circuit breakers [20, 21], while other protection concepts along with fault

blocking converter designs have been proposed [22, 23]. However, the proposed

solutions have many design trade-offs and thus require a high level of optimization to

define the best possible design of a protection system in DC grids.
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6. Conclusion

Installing reconfigurable DC links in existing AC distribution networks can offer

modularity and redundancy, flexibility of operation, and optimized power flow with loss

minimization, as well as better availability and performance during faults. The novel

ideas presented in this paper open an entirely new research direction in designing

future hybrid power systems with a more involved AC and DC integration.

Hardware reconfigurability to achieve a modular AC–DC link operation not only allows

grid operators to test the operational benefits of DC power transfer, but also gives them

the option to revert to AC operation during contingencies like link converter fault, which

are the least reliable part of the proposed system. Common use of circuit breakers and

cables during AC and DC operations offers savings in infrastructure costs incurred.

Network reconfigurability with DC link breaks a limiting radial constraint that the AC

distribution system imposed in the load balancing and loss minimization problems. The

proposed concept is scalable to multi-terminal DC systems. An efficient interconnection

of DC-distributed generation sources like PV and energy-intensive consumers like EVs

makes it possible to integrate a DC “nano-grid within the grid.”

In fault reconfiguration requirements, it is argued that the proposed architecture would

be better with minimum operation of tie-line, better voltage profile, and lower losses.

The constraints put by a protection relay coordination in restructuring the network for

feeder redistribution are also alleviated.

The vision of this paper of creating a platform for systematic transition from an all-AC

distribution network toward a universal DC system is developed.
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