

Q

Home ► All Journals ► Economics, Finance & Business ► Journal of Behavioral Finance ► List of Issues ► Volume 12, Issue 1 ► Dollar-Cost Averaging and Prospect Theor

Journal of Behavioral Finance > Volume 12, 2011 - Issue 1

992210ViewsCrossRef citations to dateAltmetric

ARTICLES

Dollar-Cost Averaging and Prospect Theory Investors: An Explanation for a Popular Investment Strategy

Hubert Dichtl & Wolfgang Drobetz

Pages 41-52 | Published online: 07 Mar 2011

L Cite this article Attps://doi.org/10.1080/15427560.2011.555029

Keywords

Dollar-cost averaging	Lump sum investing	Behavioral finance	Prospect theory	Monte Carlo simulation
Bootstrap simulation				

Notes

1. Fisher and Statman [1999] use a similar framework to analyze time diversification.

2. See Statman [1995], p. 74.

3. See Tversky and Kahneman [1992], p. 298.

4. As an example, Statman [1995] discusses defined-contribution pension plans, such as 401(k)s, where employees do not have an explicit choice between a lump sum investment and a dollar-cost averaging investment. See Statman [1995], p. 76.

5. Therefore, the results of Frühwirth and Mikula [2008] are not surprising. They compare a 10-year lump sum investment with a 10-year dollar-cost averaging strategy based on yearly payments. With a high equity risk premium, one would expect that the lump sum strategy dominates the dollar-cost averaging strategy over this long time

11. See Dimson et al. [2006], p. 29; Dimson et al. [2002], p. 19.

12. Abeysekera and Rosenbloom [2000] also base their simulations on a 20% annual stock market volatility.

13. See Dimson et al. [2006]. They document a high volatility around 30% p.a. in the German, Italian, and Japanese stock markets over a long period of time (1900–2005).

14. There may be other reference points, for example, the return target derived within an asset-liability analysis for a specific investor. However, such a reference point is highly investor-specific, and the results cannot be generalized. Furthermore, as other studies also use the zero return and the risk-free rate as reference points (e.g., Hens and Bachmann [2008]), we believe that this is a representative choice for our study.

15. For simplification, we implemented a statistical test only for cumulative prospect values.

16. The parameters recommended in Abdellaoui et al. [2005] are also used in the study of Breuer and Perst [2007].

17. The risk-free rates are average values from the Frankfurt money market.

Brownia ısly Х compou ences betweer 68. 19. See 20. Stati ually assume inder eplacement. In the an overlapp Relate

18. As we simulate continuously compounded monthly returns with the geometric

Information for	Open access	
Authors	Overview	
R&D professionals	Open journals	
Editors	Open Select	
Librarians	Dove Medical Press	
Societies	F1000Research	
Opportunities	Help and information	
Reprints and e-prints	Help and contact	
Advertising solutions	Newsroom	
Accelerated publication	All journals	
Corporate access solutions	Books	

Keep up to date

Register to receive personalised research and resources by email Sign me up

