

Q

Home ► All Journals ► Economics, Finance & Business ► Journal of Behavioral Finance ► List of Issues ► Volume 8, Issue 3 ► Answering Financial Anomalies: Sentiment

Journal of Behavioral Finance > Volume 8, 2007 - Issue 3

1,144240ViewsCrossRef citations to dateAltmetric

Original Articles

Answering Financial Anomalies: Sentiment-Based Stock Pricing

Edward R. Lawrence, George McCabe & Arun J. Prakash Pages 161-171 | Published online: 05 Dec 2007

General Section Cite this article Attps://doi.org/10.1080/15427560701547248

Abstract

The efficient market hypothesis (EMH) assumes that investors are rational and value securities rationally. A rational investor would value a security by its net present value; the price of a stock in this framework is based on the discounted cash flow or the present value model. Although the EMH-based model is partially successful in computing fundamental stock prices, other anomalies such as high trading volume, high volatility, and stock market bubbles remain unexplained. These models assume rational investors who are utility maximizers. But some investors behave irrationally or against the predictions, and in the aggregate they become irrelevant. In this paper, we relax the assumption of investor rationality, and attempt to explain high volatility, high trading volume, and stock market bubbles by incorporating investor sentiment into the already existing asset pricing model.

keywords:

investor sentiments

stock pricing

financial anomalies

Notes

¹We assume the dividends have extremely high growth g_s, where g_s > r until time T. Afterward, we assume dividends grow at a constant rate g_n, where g_n < r. The current price of the high-growth stock is then:

$$P_0 = \frac{DIV_1}{(r - g_s)} \left[1 - \left[\frac{1 + g_s}{(1 + r)} \right]^T \right] + \frac{DIV_1(1 + g_s)^{T-1}(1 + g_n)}{(1 + r)^T * (r - g_n)}$$

²See Sharpe [1978, p. 315] for a fuller description of this method.

³Future dividends are computed from the current dividends and the growth rate. The discount rate is computed using CAPM. The growth rate is computed from the company-specific information (usually a multiple of ROE and the plowback ratio).

⁴For details about the formula and a description of each term, see Shleifer [2000, pp. 134–143].

⁵For a firm with abnormally high growth, Equation ($\underline{3}$) can be modified accordingly.

⁶The remaining three companies were added much later to the Dow Jones Index.

Related research i		
People also read	Recommended articles	Cited by 24

Information for	Open access
Authors	Overview
R&D professionals	Open journals
Editors	Open Select
Librarians	Dove Medical Press
Societies	F1000Research
Opportunities	Help and information
Reprints and e-prints	Help and contact
Advertising solutions	Newsroom
Accelerated publication	All journals
Corporate access solutions	Books

Keep up to date

Register to receive personalised research and resources by email

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

Taylor & Francis Group an informa business

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG