

>> Sign in here to start your access to the latest two volumes for 14 days

66 Citations

Share

Metrics

References

Read this article

ABSTRACT

Reprints & Permissions

Full Article

Figures & data

One of the important parameters in development of bioenergy industry and economical investigation of fuels is higher heating value (HHV) of biomass in the present study; multi-layer perceptron (MLP) artificial neural network was applied to predict HHV of biomass in terms of volatile matters (VMs), fixed carbon (FC), and ash content (ASH). The purposed algorithm was trained and tested by utilizing 350 experimental data points which extracted from literature. Based on results, the MLP-ANN has great ability to estimate HHV for biomass. This method can be developed as a user-friendly software for prediction of HHV of the fuel in terms of proximate analysis. The predicting software can be wide applicable due to its high degree of precision for prediction of HHV as function of three input variables. As the computational study is cheaper and easier than

the experimental study so the developed software can be considered as alternative for laboratorial study.

KEYWORDS:

Biomass energy HHV MLP neural network

Related research 1

People also read

Recommended articles

Cited by 32

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

Accessibility

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG