

Home ► All Journals ► Physical Sciences ► Waves in Random and Complex Media ► List of Issues ► Volume 24, Issue 2 ► Structure functions for optical wave pro

Abstract

Reprints & Permissions

The features of the wave structure function (WSF) derived for spherical excitation in turbulent water are investigated. It is found that as the rate of the dissipation of turbulent kinetic energy ϵ decreases, WSF increases. The rate of dissipation of the mean-squared temperature X_T is observed to be proportional to the WSF value. Deviation from the source and the receiver axis reveals greater turbulence effect. Salinity driven turbulence gives greater WSF values compared to the temperature driven turbulence. As expected, WSF is found to increase as the propagation distance increases.

Share

Read this article

Acknowledgments

The authors gratefully acknowledge the support provided by Çankaya University and the ICT COST Action IC1101 entitled "Optical Wireless Communications – An Emerging Technology".

Information for	Open access
Authors	Overview
R&D professionals	Open journals
Editors	Open Select
Librarians	Dove Medical Press
Societies	F1000Research
Opportunities	Help and information
Reprints and e-prints	Help and contact
Advertising solutions	Newsroom
Accelerated publication	All journals
Corporate access solutions	Books

Keep up to date

Register to receive personalised research and resources by email

Copyright © 2025 Informa UK Limited Privacy policy Cookies Terms & conditions

Taylor & Francis Group an informa business

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG