

Biofuels >

Volume 12, 2021 - [Issue 5](#)

69 | 0
Views | CrossRef citations to date | Altmetric

Articles

Ultrasound processing of *Chlorella vulgaris* and a novel functional classification of power ultrasound test systems

Rory Klinger & Temesgen Garoma

Pages 503-509 | Received 04 May 2018, Accepted 11 Jun 2018, Published online: 31 Dec 2018

Cite this article <https://doi.org/10.1080/17597269.2018.1496386>

Sample our Engineering & Technology Journals
>> [Sign in here](#) to start your access to the latest two volumes for 14 days

Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

Abstract

This study evaluated energy transfer and efficiency in power ultrasound systems applied to processing of *Chlorella vulgaris*. Power transfer to a series of system combinations was characterized via calorimetry, and energy per cell ruptured was calculated from observed cell disruption. The calorimetric power transferred to solution ranged from 0.028 to 0.348 W/ml. Differentiation of reactor combinations via mixing delay and analysis in the context of non-linear acoustic theory led to a novel approach to reactor classification, allowing inference of cavitation based on streaming and heating behavior. Calorimetric efficiencies of the systems were relatively consistent, and the power transfer of a smooth probe tip was not distinguishable from that of an eroded tip face. The power ultrasound treatment of *C. vulgaris* required an average ultrasound energy input per cell ruptured ranging from 18 to 76 μ J. This value is 6

orders of magnitude higher than the energy requirement reported for the disruption of a single algae cell with an atomic force microscope. However, the specific energy requirement, estimated as 430 MJ per kg of dry algae cell disrupted, was within the range of values reported in the literature. This difference may be due to power transfer efficiencies inherent in existing algal pretreatment methods.

Keywords:

Power ultrasound

calorimetry

horn erosion

non-linear acoustics

cell rupture

Acknowledgements

This research was supported by the San Diego State University College of Engineering.

Disclosure statement

No potential conflict of interest was reported by the authors.

Related research i

People also read

Recommended articles

Cited by

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG