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Abstract

We report significant back stress strengthening and strain hardening in gradient

structured (GS) interstitial-free (IF) steel. Back stress is long-range stress caused by the

pileup of geometrically necessary dislocations (GNDs). A simple equation and a

procedure are developed to calculate back stress basing on its formation physics from

the tensile unloading–reloading hysteresis loop. The gradient structure has mechanical

incompatibility due to its grain size gradient. This induces strain gradient, which needs

to be accommodated by GNDs. Back stress not only raises the yield strength but also

significantly enhances strain hardening to increase the ductility.

Impact Statement: Gradient structure leads to high back stress hardening to increase

strength and ductility. A physically sound equation is derived to calculate the back

stress from an unloading/reloading hysteresis loop.
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Gradient Structure

Gradient structure in metals represents a new strategy for producing a superior

combination of high strength and good ductility.[1–6] The gradient structure usually

consists of a nanostructured (NS) surface layer with increasing grain size along the

depth to reach coarse-grained (CG) sizes in the central layer.[2,4]

Gradient structure can promote ductility significantly,[2,4–9] which is measured under

tensile loading. The NS layer in a gradient structure may sustain a large amount of

tensile strain,[2,4] because they are constrained by the CG layer. It was reported that

the gradient structured (GS) Cu derives its ductility from the confinement of the soft CG

core,[2,10] and from strong grain growth in the NS layer by mechanically driven grain

growth during tensile deformation. Nanostructures in high-purity copper are known to

be unstable at room temperature, and mechanical-driven grain growth in

nanocrystalline metals has been extensively reported.[11–16] For GS metals with stable

gradient structures, however, their high ductility is attributed to extra strain hardening

due to the presence of strain gradient and the change of stress states, which generates

geometrically necessary dislocations (GNDs) and promotes the generation and

interaction of dislocations.[3,4,17, 18] Furthermore, the gradient structure is observed

to produce an intrinsic synergetic strengthening, with its yield strength much higher

than that calculated by the rule of mixture from separate gradient layers,[3] which is

attributed to the macroscopic stress gradient and plastic incompatibility between

layers.[3,4]

The nature of plastic deformation in the gradient structure is still not very clear.[1,2] In

fact, the gradient structure can be approximately regarded as the integration of many

thin layers with increasing grain sizes.[3,4] The gradient structure deforms

https://www.tandfonline.com/keyword/Back+Stress
https://www.tandfonline.com/keyword/Geometrically+Necessary+Dislocations
https://www.tandfonline.com/keyword/Work+Hardening
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heterogeneously due to plastic incompatibilities between neighboring layers with

different flow behaviors and stresses under applied strains. As such, it is reasonable to

anticipate the development of the strain gradient and internal stresses during plastic

deformation, as a result of the plastic incompatibilities between different layers, similar

to what happens in composites [19–21] and dual-phase structures.[22]

Back stress has been reported to play a crucial role in strain hardening, strengthening

and mechanical properties.[21–23] It is a type of long-range stress exerted by GNDs

that are accumulated and piled up against barriers. It interacts with mobile dislocations

to affect their slip.[24] The back stress reduces the effective resolved shear stress for

dislocation slip because it always acts in the opposite direction of the applied resolved

shear stress. In a heterogeneous structure, strain will be inhomogeneous but

continuous, producing strain gradients, which needs to be accommodated by GNDs.

[23,25–27] It has been observed that back stress strengthening and back stress strain-

hardening are primarily responsible for unprecedented combination of strength and

ductility of heterogeneous lamella Ti, which was found as strong as ultrafine-grained Ti

and as ductile as CG Ti.[23] The gradient structure can be regarded as a type of

heterogeneous structure. Therefore, it is reasonable to assume that significant back

stress will be developed in gradient structure, which should be investigated to have a

better understanding on the fundamentals of gradient structure.

Here we report for the first time unambiguous experimental evidences of significant

back stress hardening in GS IF steel. We will also derive an equation with sound physics

to calculate back stress from an unloading–reloading stress–strain hysteresis loop

during a tensile test. A detailed procedure on how to extract useful data from the

hysteresis loop for calculating the back stress is presented.

A 1-mm thick sheet of interstitial-free (IF) steel was used as the starting materials with

the composition (wt%) 0.003%C, 0.08% Mn, 0.009% Si, 0.008% S, 0.011% P, 0.037% Al,

0.063% Ti, and 38 ppm N. The disk of a 100 mm diameter was cut and annealed at

1173 K for 1 hour to obtain a homogeneous CG microstructure with a mean grain size of

35 µm. Surface mechanical attrition treatment (SMAT) [28] was used to produce the GS

sample. The SMAT duration was 5 minutes for both sides of the disk. NS layer of 120

µm thick was formed, which consists of, in sequence, the nanograins (minimum grain

size of <100 nm in the top layer), ultrafine grains, and deformed coarse grains with

dislocation cells towards the central CG core. Microstructural characterization was

detailed in our previous papers.[3,4]



Unloading–reloading process during tensile tests was conducted using an Instron 5966

machine at a strain rate of 5 × 10  s  at room temperature. Tensile specimens with a

gauge length of 10 mm and a width of 2.5 mm were cut from SMAT-processed disks. An

extensometer was used to measure tensile strain. At a certain unloading strain, the

specimen was unloaded in a load-control mode to 20 N at an unloading rate of 200 N 

min , followed by reloading to the same applied load.

Figure  (a) shows the monotonic tensile true stress–true strain (σ–) curves in both GS

and CG samples. The GS sample shows large tensile ductility comparable to that of CG,

but with triple yield strength of CG, which is typical of the excellent combination of

strength and ductility in GS metals.[2–8] A transient is visible soon after yielding,

characterized by the presence of a short concave segment on the σ– curve.[4] During

the transient, the strain hardening rate (Θ) sharply drops at first, which is followed by a

rapid up-turn, as shown in Figure  (b). Figure  (c) shows the unloading and reloading

test hysteresis loops measured at varying tensile strains for both CG and GS samples.

Figure 1. (Colour online) (a) Tensile stress–strain curves in the GS and CG IF steel

samples. (b) Strain hardening rate (Θ = dσ/d) vs. strain. (c) The unloading and reloading

test hysteresis loops measured at varying tensile strains for both CG and GS samples.

Unloading–reloading was performed at varying tensile strains to investigate the

evolution of back stress during tensile test. Figure  (a) shows schematically the

unloading–reloading stress–strain hysteresis loop. As shown, the unloading starts at

unloading strains ( ) at point A. The segment AB of the unloading curve is quasi-elastic

and caused by stress relaxation [29] or viscous flow of the material.[30,31] The stress

drop in this segment is called the thermal component of the flow stress.[24,29] or

viscous stress.[30,31] The segment BC is the linear (elastic) part of the unloading stress

with an effective unloading Young's modulus of E . The point C is called the unloading

yielding point, with a stress of σ . Similar segments also exist for the reloading curve

with EF as the linear (elastic) part of the reloading stress–strain curve with an effective

reloading Young's modulus of E , which can be assumed equal to E  because the
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microstructure is assumed not changed during the unloading–reloading. The point F is

called the reloading yielding point, with a stress of σ . Figure  (b) is the measured

hysteresis loop from a GS IF steel sample.

Figure 2. (Colour online) (a) The schematic of the unloading–reloading loop for defining

the unload yielding σ , reload yielding σ , back stress σ  and frictional stress σ ,

effective unloading Young's modulus of E , effective reloading Young's modulus of E .

(b) A measured hysteresis loop from the GS IF steel sample with σ  and σ  defined.

From the unloading–reloading hysteresis loop, we can calculate the back stress σ , and

the frictional stress σ . The back stress is always in the opposite direction of the applied

stress, while frictional stress is always in the direction that opposes the motion of

dislocations. The frictional stress consists of the Peierls stress as well as other stresses

that are needed to overcome the dynamic pinning of dislocations such as solute atoms,

second phase, forest dislocations, dislocation debris, dislocation jogs, etc.

To derive the equation for calculating the back stress and frictional stress, we first

assume that the frictional stress σ  is a constant during the entire unloading–reloading

process. We also assume that the back stress does not change with unloading before

the unloading yield point C in Figure  (a). This assumption is reasonable because the

reverse dislocation motion does not start above this point. In other words, GNDs that

produce the back stress do not change their density or configuration before the

unloading yield, which keeps the back stress approximately constant. This assumption

is important and was also adopted by Dickson et al.[29] During the unloading, the back

stress is the stress that drives the mobile dislocations to reverse their gliding direction

to produce unloading yield. At the unloading yield point C (Figure  (a)), the applied

stress is low enough that the back stress starts to overcome the applied stress and the

frictional stress to make dislocations glide backward, that is

(1)
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where σ  is the unloading yield stress as defined in Figure  (a).

During the reloading, the applied stress needs to overcome the back stress and the

frictional stress to drive the dislocation forward at the reloading yield point F, which can

be described as

(2)

where σ  is the reloading yield stress as defined in Figure  (a).

Here again, we assume that the back stress during reloading is the same as the back

stress during unloading. This is reasonable because during the unloading–reloading

process, dislocation configuration can be considered reversible.[32] Solving Equations

(1) and (2) yields

(3)

and

(4)

Equation (3) is similar to an earlier equation proposed for cyclic loading by Cottrell [33]

and Kulmann-Wilsdorf and Laird,[32] except they used σ , the initial flow stress at the

beginning of the unloading, in place of the σ , that is

(5)

where σ  is the initial unloading stress as defined in Figure  (a).

We argue that Equation (3) is physically sounder than Equation (5) because we are

defining unloading yield and reloading yield using the same criterion, that is, the same

deviation of effective Young's modulus as discussed later. It has been recognized that

Equation (5) overestimates the back stress, and was later modified by Dickson et al. to

include the thermal component of the flow stress:[24,29]

(6)

where σ* is the thermal component of the flow stress as defined in Figure  (a),[24,29]

which is also called the viscous stress. [31]

Equation (3) is especially suitable for hysteresis loops with positive unloading yield

stresses. If the back stress is very small, the unloading yield stress may become

negative, in which case σ  cannot be measured during unloading. However, we expect

Equation (3) to be valid if the applied stress is reversed to negative to measure σ

before the reloading. As discussed later, Equation (3) derived here has an important

advantage over previously published Equations (5) and (6): it produces consistent back

stress values with much less scatter. In addition, Equations (5) and (6) are physically
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problematic because they implicitly used different criteria to define the unloading yield

and reloading yield, which is physically unjustifiable.

To extract useful data from the unloading–reloading hysteresis loop, one needs to first

determine the unloading yield stress σ  and reloading yield stress σ . However, the real

hysteresis loop (e.g. Figure  (b)) is not as well defined as in Figure  (a), and the

practical extraction of the data is not straightforward.[31] The first step is to determine

the elastic segments BC as well as its slope (the effective Young's modulus). The

unloading yield point C is usually determined by a plastic strain offset in the range of 5 

× 10  to 10 , which have been used by different research groups.[24,31,34–37]

These offset values are arbitrary and are not well justified. Here we propose to use the

deviation of the stress–strain slope from the effective Young's modulus as a physically

sound method to determine the yield point. In this study, we choose 5%, 10%, and 15%

slope reduction from the effective Young's modulus, E . If the strain hardening in the

plastically deforming volume is ignored, the slope reduction should be equal to the

volume fraction that is plastically deforming. For example, a 10% reduction in E  means

10% of the sample volume is plastically deforming. We also propose to use E  = E , and

the same slope reduction values for determining both the unloading yield point and

reloading yield point.

Figure   compares the evolution of the unloading yield stress, reloading yield stress,

and back stress of the CG and GS IF steel samples with increasing tensile strain at

which the unloading was initiated. Several features can be seen from the figure. First,

the unloading yield stress is affected more than the reloading yield stress by the slope

reduction offset value that is used to determine them (Figure  (a) and 3(c)). Second,

using a larger slope reduction leads to lower unloading yield stress σ  and higher

reloading yield stress σ . Part of these variations in σ  and σ  caused by the choice of

slope reduction cancel each other in Equation (3), which leads to smaller scatter in the

calculated back stress using Equation 3 (Figure  (b) and 3(d)). This is an advantage of

Equation (3) for calculating the back stress, as compared with the previously reported

Equation (6).[23, 24,29–31] Third, the back stresses in both the CG and GS samples

increase with the tensile strain. However, the back stress is higher in the GS sample

than in the CG sample. For example, for the 5% slope reduction, the back stress in the

GS sample is 10–40% higher than those in the CG sample (the red curves in Figure  (b)

and 3(d)). Fourth, Figure  (c) and 3(d) shows that if a large slope reduction value is

used, the unloading yield stresses for the GS sample at small tensile strains are
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negative and therefore cannot be measured in the unloading curve. This makes it

advantageous to use a smaller slope reduction value in determining the back stress.

Figure 3. (Colour online) Evolution of (a) unloading yield stress σ  and reloading yield

stress σ  and (b) back stress with increasing unloading strain  for CG IF steel, and the

evolution of (c) unloading/reloading yield stresses and (d) back stress with increasing 

for GS IF steel. σ  represents the back stress calculated using 5% slope reduction

from the effective Young's modulus.

For valid and easy comparison, we propose that the slope reduction value for

calculating the back stress is marked in the symbol. For example, σ  represents back

stress calculated using 5% slope reduction from the effective Young's modulus, as

shown in Figure  (b) and 3(d). Of course, there exist uncertainties in defining E , E , and

the corresponding slope reductions due to the difficulties for determining the linear

parts of both unloading and reloading curves; however, the consequences of these

uncertainties appear to be small due to the method we used.

As shown in Figure  (a), the frictional stress σ  calculated using Equation (4) is very

scattered. A larger slope reduction value leads to significantly higher σ . For example,

for the CG sample, the σ  calculated using 20% slope reduction is many times larger

than those calculated using the 5% slope reduction. This is because Equation (4) adds

the absolute values of σ  and σ  variations together instead of making them cancel

each other as in Equation (3). Therefore, the frictional stress σ  calculated using

u
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Equation (4) is not quantitatively dependable. Nevertheless, Figure  (a) consistently

shows that for any slope reduction value, the calculated frictional stress is higher in the

GS sample than in the CG sample. This is due to the higher dislocation density in the

GS sample than in the CG sample.[3,4]

Figure 4. (Colour online) The frictional stress σ  vs. tensile strain  for the GS and CG

IF steel samples calculated according to Equation (4). (b) The distinct back stress

hardening in GS IF steel.  denotes the back stress hardening rate calculated using 5%

slope reduction from the effective Young's modulus.

Figure  (b) shows that the GS sample has much higher back stress strain-hardening

than the CG sample due to the heterogeneous microstructure, especially in the

transient range that correlates to Θ up-turn. This indicates that the back stress strain-

hardening has significant contribution to the observed Θ up-turn. The rapid back stress

increase right after the yielding of the GS sample is also obvious in Figure  (d). The

observed Θ up-turn has been attributed to fast dislocation accumulation due to the

back stress strain-hardening after the initial exhaustion of mobile dislocations.[4] The

high back stress associated with the observed Θ up-turn observed here suggests that a

large quantity of GNDs is accumulated at this stage. Since the GNDs are associated

with the strain gradient in the sample, this observation also suggests that there was a

quick increase in the strain gradient at the beginning of the plastic deformation of the

GS IF steel. This is understandable because this is at the deformation stage in which

the NS surface layers just started to become unstable and the lateral (perpendicular to

the tensile direction) stresses start to reverse their directions.[3,4] Specifically, the

surface NS layers transit from compressive lateral stress to tensile laterals stress, while

the central larger grained layer transits in an opposite way. Such a transition is

expected to increase the strain gradient.
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In summary, it is found that the GS IF steel developed strong back stress strengthening

and back stress strain-hardening during tensile testing, which arise from the plastic

incompatibilities due to its microstructural heterogeneity. The high back stress near the

beginning of the plastic deformation of the GS IF steel samples should have contributed

to the observed synergetic strengthening,[3] while the high back stress hardening

should have contributed to the observed high ductility.[4] The equation derived and the

procedure proposed in this work for calculating the back stress from the unloading–

reloading hysteresis loop produces more consistent back stress value than what is

previously reported.
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