Cogent Mathematics＞

Volume 2， 2015 －Issue 1Open access

2，142 1 0
 Views CrossRef citations to date Altmetric

Listen

Research Article

Response surface designs using the generalized variance inflation factors

Diarmuid O’Driscoll \＆Donald E．Ramirez $\boldsymbol{\Delta}$｜Guohua Zou（Reviewing Editor）
Article：1053728｜Received 22 Dec 2014，Accepted 15 May 2015，Published online： 14 Jun 2015
SS Cite this article
入https：／／doi．org／10．1080／23311835．2015．1053728
W）Check for updates

显 Full Article Figures \＆data 目 References $\boldsymbol{6 6}$ Citations Lill Metrics © Licensing
Reprints \＆Permissions

```
\ View PDF
```

${ }^{\Lambda} \mathrm{L}$ stract
We study response surface designs using the generalized variance inflation factors for subsets as an extension of the variance inflation factors．

Public

Respons modto \because factor G linear re

About Cookies On This Site

We and our partners use cookies to enhance your website experience，learn how our site is used，offer personalised features，measure the effectiveness of our services，and tailor content and ads to your interests while you navigate on the web or interact with us across devices．You can choose to accept all of these cookies or only essential cookies．To learn more or manage your preferences，click ＂Settings＂．For further information about the data we collect from you，please see our Privacy Policy．
using GVIF, the H310 design can be improved for the standard global optimality criteria of A, D, and E.

1. Introduction

We consider a linear regression $Y=X \beta+\varepsilon$ with X a full rank $n \times p$ matrix and $\mathrm{L}(\varepsilon)=\mathrm{N}(0, \sigma 2 \mathrm{In})$. The variance inflation factor VIF, Belsley (1986), measures the penalty for adding one non-orthogonal additional explanatory variable to a linear regression model, and they can be computed as a ratio of determinants. The extension of VIF to a measure of the penalty for adding a subset of variables to a model is the generalized variance inflation factor GVIF of Fox and Monette (1992), which will be used to study response surface designs, in particular, as the penalty for adding the quadratic terms to the model.

2. Variance inflation factors

For our linear model $Y=X \beta+\varepsilon$, let $D X$ be the diagonal matrix with entries on the diagonal $D X[i, i]=\left(X^{\prime} X\right) i, i-1 / 2$. When the design has been standardized $X \rightarrow X D X$, the VIFs are the diagonal entries of the inverse of $S X=D X\left(X^{\prime} X\right) D X$. That is, the VIFs are the ratios of the actual variances for the explanatory variables to the "ideal" variances had the columns of X been orthogonal. Note that we follow Stewart (1987) and do not necessarily center the explanatory variables.

For our linear model $Y=X \beta+\varepsilon$, view $X=[X[p], x p]$ with $x p$ the p th column of X and $X[p]$ the matrix formed by the remaining columns. The variance inflation factor VIFp measurec tho offort nf addinn rnlımn vn tn Xinl Enr nntatinnal ranuonionre, we
previous

Accept All
nal to the w and pth

Essential Onl

Settings
features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click from you, please see our Privacy Policy. -
demons About Cookies On This Site

We and our partners use cookies to enhance your website
experience, learn how our site is used, offer personalised
We and our partners use cookies to enhance your website
experience, learn how our site is used, offer personalised

$$
\begin{gather*}
\text { VIFp }=[S X-1] p, p=\left[D X-1\left(X^{\prime} X\right)-1 D X-1\right] p, p=\left(x p^{\prime} x p\right) 1 / 2 \operatorname{det}(C p, p) \operatorname{det}\left(X^{\prime} X\right) \\
 \tag{1}\\
\left(\times p^{\prime} \times p\right) 1 / 2=\operatorname{det}(M p) \operatorname{det}\left(X^{\prime} X\right)
\end{gather*}
$$

the ratio of the determinant of the idealized moment matrix $M p$ to the determinant of the moment matrix $X^{\prime} X$. This definition extends naturally to subsets and is discussed in the next section.

For an alternate view of the how collinearities in the explanatory variables inflate the model variances of the regression coefficients when compared to a fictitious orthogonal reference design, consider the formula for the model variance

$$
\operatorname{VarM}\left(\beta^{\wedge} j\right)=\sigma 2 \sum i=1 n\left(x i j-x^{-j}\right) 211-R j 2
$$

where Rj 2 is the square of the multiple correlation from the regression of the jth column of $X=[$ xij] on the remaining columns as in Liao and Valliant (2012). The first term $\sigma 2 /$ $\Sigma\left(x_{i j}-x^{-} j\right) 2$ is the model variance for $\beta^{\wedge} j$ had the jth explanatory variable been orthogonal to the remaining variables. The second term $1 /(1-\mathrm{Rj} 2)$ is a standard definition of the jthVIF as in Thiel (1971).

3. Generalized variance inflation factors

In this section, we introduce the GVIFs as an extension of the classical variance inflation factors VIF from Equation 1. For the linear model $Y=X \beta+\varepsilon$, view $X=[X 1, X 2]$ partitioned with X 1 of dimension $n \times r$ usually consisting of the lower order terms and X 2 of dimension $n \times s$ usually consisting of the higher order terms. The idealized moment matrix for the (r, s) partitioning of X is

About Cookies On This Site

We and our partners use cookies to enhance your website
experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click

Accept All

Essential Onl

Settings

as in Equation 10 of Fox and Monette (1992), who compared the sizes of the joint confidence regions for β for partitioned designs and noted when $X=[X[p], x p]$ that GVIF[xp|X[p]]=VIFp. Equation 2 is in the spirit of the efficiency comparisons in linear inferences introduced in Theorems 4 and 5 of Jensen and Ramirez (1993). A similar measure of collinearity is mentioned in Note 2 in Wichers (1975), Theorem 1 of Berk (1977), and Garcia, Garcia, and Soto (2011). For the simple linear regression model with $p=2$, Equation 2 gives VIF=11- $\rho 2$ with ρ the correlation coefficient as required. Fox and Monette (1992) suggested that X1 contains the variables which are of "simultaneous interest," while X2 contains additional variables selected by the investigator. We will set X1 for the constant and main effects and set X2 the (optional) quadratic terms with values from X 1 .

Willan and Watts (1978) measured the effect of collinearity using the ratio of the volume of the actual joint confidence region for β^{\wedge} to the volume of the joint confidence region in the fictitious orthogonal reference design. Their ratio is in the spirit of GVIF as $\operatorname{det}\left(X^{\prime} X\right)$ is inversely proportional to the square of the volume of the joint confidence region for β^{\wedge}. They also introduced a measure of relative predictability and they note: "The existence of near linear relations in the independent variables of the actual data reduces the overall predictive efficiency by this factor." For a simple case study, consider the simple linear regression model with $n=4, x 1=[-2,-1,1,2]^{\prime}$, and $y=$ $[4,1,1,4]^{\prime}$. The 95% prediction interval for $\times 1=0$ is 2.5 ± 10.20. If the model also includes $x 2=[-2.001,-1.001,1.001,2.001]^{\prime}$, then the 95% prediction interval for $(x 1, x 2)=(0,0)$ is 2.5 ± 46.02 demonstrating the loss of predictive efficiency due to the collinearity introduced by $\times 2$.

For the (r, s) partition of $X=[X 1, X 2]$ with $X 1$ of dimension $n \times r$ and $X 2$ of dimension $n \times s$, set

About Cookies On This Site

and den
We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.

$$
\operatorname{det}(R)=\operatorname{det}\left(X^{\prime} X\right) \operatorname{det}\left(X 1^{\prime} X 1\right) \operatorname{det}\left(X 2^{\prime} X 2\right)=1 G V I F(X 2 \mid X 1) ;
$$

equivalently,

$$
\operatorname{det}(R)=\operatorname{det}\left(I r \times r-B r \times s B s \times r^{\prime}\right)=\operatorname{det}\left(I s \times s-B s \times r^{\prime} B r \times s\right)
$$

where $\mathrm{Br} \times \mathrm{s}=\mathrm{X} 1^{\prime} \mathrm{X} 1-1 / 2\left(\mathrm{X} 1^{\prime} \mathrm{X} 2\right) \mathrm{X} 2^{\prime} \mathrm{X} 2-1 / 2$.
In the case $\{r=p-1, s=1\}, X 2=x p$ is a $n \times 1$ vector and the partitioned design $X=[X 1, x p]$ has $\operatorname{det}(\mathrm{R})=1-\left[x p^{\prime} X 1 \times 1^{\prime} \times 1-1 \times 1^{\prime} \times p\right] / \times p^{\prime} x p$. From standard facts for the inverse of a partitioned matrix, for example, Myers (1990, p. 459), VIFp $=[R-1] p, p=[D(p-$ $\left.1,1)-1\left(X^{\prime} X\right)-1 D(p-1,1)-1\right] p, p$ can be computed directly as

$$
\begin{gathered}
\times p^{\prime} \times p 1 / 2\left(X^{\prime} X\right) p, p-1 \times p^{\prime} \times p 1 / 2=\times p^{\prime} \times p \times p^{\prime} \times p-\times p^{\prime} \times 1 \times 11^{\prime} \times 1-1 X 11^{\prime} \times p=11-\left[\times p^{\prime} \times 1 \times 11^{\prime} \times 1-\right. \\
\left.1 \times 1^{\prime} \times p\right] / \times p^{\prime} \times p=1 \operatorname{det}(R)=G V I F(X 2 \mid X 1) .
\end{gathered}
$$

Table 1. CCD with parameter a, canonical index $\gamma \mathrm{X} 2$, and GVIF

```
Display Table
```

We study the eigenvalue structure of $M(r, s)$ in Appendix 1 . Let $\{\lambda 1 \geq \lambda 2 \geq \ldots$
$\geq \lambda \min (r, s) \geq 0\}$ be the non-negative singular values of $X 1^{\prime} \times 1-1 / 2\left(X 1^{\prime} \times 2\right) \times 2 \times 2-1 / 2$. It is shown in Appendix 1 that an alternative formulation for GVIF is

$$
\begin{equation*}
\operatorname{GVIF}(X 2 \mid X 1)=\Pi \mathrm{i}=1 \mathrm{~min}(\mathrm{r}, \mathrm{~s})(1-\lambda i 2)-1 \tag{4}
\end{equation*}
$$

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.

Accept All
, if a=1,

Essential Onlal choice of
Essential Onlal choice of

Settings O＇Driscoll
ng the o＇Driscoll
as the canonical index with $\operatorname{GVIF}(x 2 \mid 1, x)=11-\gamma X 2=1 \operatorname{det}(R)$ ．Surprisingly，many higher order designs also have the off－diagonal entry of the canonical moment matrix with a unique positive singular value with $\operatorname{GVIF}(X 2 \mid X 1)=11-\gamma X 2$ with the collinearity between the lower order terms and the upper order terms as a function of the canonical index

In this section，we compare the central composite design（CCD） X of Box and Wilson （1951）and the factorial design Z．The design points are shown in Table A1 of Appendix

The CCD traditionally uses the value $a=2$ in four entries，while the factorial design uses the value $a=1$ ．To study the difference in the designs with these different values，we computed the GVIF to compare the＂orthogonality＂between the lower order terms X1 of dimension 9×3 and the higher order quadratic terms X 2 of dimension 9×3 ．The off－
From Equation 4， $\operatorname{GVIF}(x 2 \mid 1, x)=(1-\lambda 2)-1$ where $\lambda=\rho 12+\rho 22$ is the unique positive
號號 1

 －
\qquad

$$
\gamma X 2=\rho 12+\rho 22
$$

5．Central composite and factorial designs for quadratic models

2．Both designs are 9×6 and use the quadratic response model diagonal B3×3 entry of R from Equation 3 in Section $\underline{3}$ has the form

About Cookies On This Site
We and our partners use cookies to enhance your website experience，learn how our site is used，offer personalised features，measure the effectiveness of our services，and tailor content and ads to your interests while you navigate on the web or interact with us across devices．You can choose to accept all of these cookies or only essential cookies．To learn more or manage your preferences，click

＂Settings＂．For further information about the data we collect
"Settings". For further information about the data we colle from you，please see our Privacy Policy

[^0]\qquad元
.

\section*{singular value of $[\rho 1, \rho 2]^{\prime}$ ．Denote}

.

[^1] ـ
$$
y=\beta 0+\beta 1 \times 1+\beta 2 \times 2+\beta 11 \times 12+\beta 22 \times 22+\beta 12 \times 1 \times 2+\varepsilon
$$

$B 3 \times 3=\rho 1 \rho 20000000$

I-
ect

 \qquad號
\qquad
\square
\qquad
\qquad O

號

號

號
|

號

ation 6 in Appendix 1 has only one non－zero
this value the canonical index．We extend this
$\left.\times 1^{\prime} \times 2\right) \times 2^{\prime} \times 2-1 / 2$ has multiple positive singular
angular matrix Ar \times s is defined by
r a design matrix X ，we extend the definition of
F2．Alternatively， $\mathrm{Y} \times 2=$ trace $\left(X 2^{\prime} \times 2\right.$－
7 7．
n matrix $\times 11 \times 10$ ，Table $A 2$ in Appendix 2 ，with
，row 2 for $\times 3$ ．In succession，we will replace the
r example，replacing the four entries which are
num value for $\gamma \times 2=0.8199$ with c1＝1．1768
are within the four digit accuracy of the data．We
？using the four entries which are 0.6386 ；with c3
3 ；with c4 with the eight entries which are 1 ；and
he original design has $\gamma \times 2=0.8199$ ．The entries
gnificant digits．With this precision，the original
n tho rannniral indov wa fnr tho firct five entries

 －

$$
0
$$

\square

$$
17
$$

ation 6 in Appendix 1 has only one non－zero
this value the canonical index．We extend this
$\left.\times 1^{\prime} \times 2\right) \times 2^{\prime} \times 2-1 / 2$ has multiple positive singular
angular matrix Ar \times s is defined by
r a design matrix X ，we extend the definition of
F2．Alternatively， $\mathrm{Y} \times 2=$ trace $\left(X 2^{\prime} \times 2\right.$－
7 7．
n matrix $\times 11 \times 10$ ，Table $A 2$ in Appendix 2 ，with
，row 2 for $\times 3$ ．In succession，we will replace the
r example，replacing the four entries which are
num value for $\gamma \times 2=0.8199$ with c1＝1．1768
are within the four digit accuracy of the data．We
？using the four entries which are 0.6386 ；with c3
3 ；with c4 with the eight entries which are 1 ；and
he original design has $\gamma \times 2=0.8199$ ．The entries
gnificant digits．With this precision，the original
n tho rannniral indov wa fnr tho firct five entries

都

路

號

I

$$
\mid
$$號

號 －

 atrix and

sign of n

\qquad
 ．

號號

\qquad

\qquad

 \qquad

\qquad
\qquad
3. Box, G. E. P., \& Behnken, D. W. (1960). Some new three-level designs for the study of quantitative variables. Technometrics, 2, 455-475.

Google Scholar
4. Box, M. J., \& Draper, N. R. (1974). On minimum-point second order design. Technometrics, 16, 613-616.

Web of Science ${ }^{\circledR}$ Google Scholar
5. Box, G. E. P., \& Wilson, K. B. (1951). On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society, Series B, 13, 1-45.

Web of Science ${ }^{\circledR}$ Google Scholar

6. Eaton, M. L. (1983). Multivariate statistics. New York, NY: Wiley. Google Scholar
7. Fox, J., \& Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87, 178-183.

Web of Science ${ }^{\circledR}$ Google Scholar
8. Garcia, C. B., Garcia, J., \& Soto, J. (2011). The raise method: An alternative procedure to estimate the parameters in presence of collinearity. Quality and Quantity, 45, 403423.

```
Web of Science \({ }^{\circledR}\) Google Scholar
```


About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.
regression with applications（2nd ed．）．
Revisiting some design criteria（ under
for quadratic response surfaces．
Essential Onl
ics．New York，NY：Wiley．
Accept All of
regression with applications（2nd ed．）．
Revisiting some design criteria（ under
for quadratic response surfaces．
Essential Onl
ics．New York，NY：Wiley．
Accept All of
regression with applications（2nd ed．）．
Revisiting some design criteria（ under
for quadratic response surfaces．
Essential Onl
ics．New York，NY：Wiley．
Accept All of
> （

2．Liao，D．，\＆Valliant，R．（2012）．Variance inflation in the analysis of complex survey

4．O＇Driscoll，D．，\＆Ramirez，D．E．（in press）．Revisiting some design criteria（ under

6．Stewart，G．W．（1987）．Collinearity and least squares regression．Statistical Science，2，
choose to accept all of these cookies or only essential cookies．To learn more or manage your preferences，click

1．Jensen，D．R．，\＆Ramirez，D．E．（1993）．Efficiency comparisons in linear inference．
\square

regression with applications（2nd ed．）．
Revisiting some design criteria（ under
sh for quadratic response surfaces．
ics．New York，NY：Wiley．
east squares regression．Statistical Science，2，
Accept All of

促

． \square

We study the eigenvalue structure of $M(r, s)$ ．Let $\{\lambda 1 \geq \lambda 2 \geq \ldots \geq \lambda \min (r, s) \geq 0\}$ be the non－ negative singular values of $\mathrm{X} 1^{\prime} \mathrm{X} 1-1 / 2\left(\mathrm{X} 1^{\prime} \mathrm{X} 2\right) \mathrm{X} 2^{\prime} \times 2-1 / 2$ ．

As with the canonical correlation coefficients Eaton（1983），write the off－diagonal rectangular array $\mathrm{Br} \times \mathrm{s}$ of R as $\mathrm{P} \wedge \mathrm{Q}^{\prime}$ with P and Q orthogonal matrices and $\wedge r \times s$ the rectangular diagonal matrix with the non－negative singular values down the diagonal．

$$
\mathrm{L}=\operatorname{Pr} \times \mathrm{rOr} \times \mathrm{s} 0 \mathrm{~s} \times \mathrm{rQs} \times \mathrm{s} .
$$

For notational convenience，we assume $r \leq s$ ．The matrix L is orthogonal and transforms $\mathrm{R} \rightarrow \mathrm{L}$＇RL into diagonal matrices：

$$
\begin{equation*}
\left|r \wedge r \times s \wedge s \times r^{\prime}\right| s=\mid r[S V r \times r \mid 0 r \times(s-r)][S V r \times r \mid 0 r \times(s-r)]^{\prime} I s \tag{A1}
\end{equation*}
$$

with $\Lambda r \times s=[S V r \times r \mid 0 r \times(s-r)]$ where $S V r \times r$ is the diagonal matrix of the non－negative singular values．Since L is orthogonal，this transformation has not changed the eigenvalues．To compute the determinant of R ，convert the matrix in Equation 6 into an upper diagonal matrix by Gauss Elimination on $\Lambda s \times r^{\prime}$ ．This changes r of the 1＇s on the diagonal in rows $r+1$ to $r+r$ into $1-\lambda i 2$ ，and thus $\operatorname{det}(R)=\Pi i=1 \min (r, s)(1-\lambda i 2)$ with

$$
\operatorname{GVIF}(X 2 \mid X 1)=\Pi i=1 \min (r, s) 11-\lambda i 2
$$

The singular values of $R 12=X 1^{\prime} X 1-1 / 2\left(X 1^{\prime} X 2\right) \times 2^{\prime} X 2-1 / 2$ are the non－negative square roots of the eigenvalues of $\Lambda^{\prime} \wedge$ denoted by

About Cookies On This Site

We and our partners use cookies to enhance your website experience，learn how our site is used，offer personalised features，measure the effectiveness of our services，and tailor content and ads to your interests while you navigate on the web or interact with us across devices．You can choose to accept all of these cookies or only essential cookies．To learn more or manage your preferences，click ＂Settings＂．For further information about the data we collect

Essential Onljte that

Essential onlo that
\qquad
Accept All
\qquad

 （

[^2] ．
\square

.
\square
\square

[^3]F ．
 experience，learn how our site is used，offer personalised
$$
\square
$$
ـ

|
from you, please see our Privacy Policy.

Table A1. The lower order matrix for the CCD with center run with $\mathrm{a}=2, \mathrm{n}=9$ and the lower order matrix for the factorial design with center run $\mathrm{n}=9$

Display Table

Table A2. The lower order matrix for the hybrid (H310) design of Roquemore ($\underline{1976 \text {) with center run, } n=11 ~}$

Display Table

Table A3. The lower order matrix for the hybrid (H311B) design of Roquemore ($\underline{1976 \text {) } \text {) with center run, } n=11 ~}$

```
Display Table
```

Table A4. The lower order matrix for the Box and Behnken (1960) design (BBD) with center run, $\mathrm{n}=13$

Display Table
About Cookies On This Site
We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy.

Table A6. The lower order matrix for the Box and Draper (1974) minimal design (BDD) with center run, $n=11$

Display Table

Table A7. The Lower order matrix for the small composite
 $\mathrm{n}=11$

```
Display Table
```

Download PDF

Related research (i)

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and

Essential Onl

 tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click
Information for

Authors
R\&D professionals
Editors
Librarians
Societies
Opportunities
Reprints and e-prints
Advertising solutions
Accelerated publication
Corporate access solutions

Open access
Overview
Open journals
Open Select
Dove Medical Press
F1000Research
Help and information
Help and contact
Newsroom
All journals
Books

Keep up to date
Register to receive personalised research and resources by email

Sign me up

Copyright © 2024 Informa UK Limited Privacy policy Cookies Terms \& conditions

About Cookies On This Site

Accept All
We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click

[^0]: －

[^1]: \qquad

[^2]:

 \qquad

[^3]:
 #### Abstract

 號

