

Home ► All Journals ► Physical Sciences ► Synthetic Communications ► List of Issues ► Volume 34, Issue 13 ► Synthesis of Glucopyranosyl Amides Using

Synthetic Communications >

An International Journal for Rapid Communication of Synthetic Organic Chemistry Volume 34, 2004 - Issue 13

116 6
Views CrossRef citations to date Altmetric
Original Articles

Synthesis of Glucopyranosyl Amides Using Polymer-Supported Reagents

Yuriko Y. Root, Maximillian S. Bailor & Peter Norris

Pages 2499-2506 | Received 02 Mar 2004, Published online: 10 Jan 2011

66 Cite this article
✓ https://doi.org/10.1081/SCC-120039504

Abstract

2,3,4,6-Tetra-O-acetyl- β -D-glucopyranosyl azide reacts efficiently with polymer-supported triphenylphosphine and various acid chlorides to yield glucopyranosyl amides with retention of the β -gluco stereochemistry.

Keywords:

Glycosyl amides Triphenylphosphine Polymer-bound iminophosphorane Polymer-supported Reagents

Acknowledgments

The authors would like to acknowledge Research Corporation for funding part of this work as well as the University Research Council at Youngstown State University for a PACER award. M.S.B. was a summer student who participated in YSU's National Science Foundation-sponsored Research Experience for Undergraduates program.

Notes

^aAll new compounds were homogeneous by TLC and at least 95% pure as indicated by 1 H NMR spectra. All compounds gave satisfactory analytical data, including 1 H NMR (400 MHz), ¹³C NMR (100 MHz), and mass spectra. Typical procedure for the formation of glucopyranosyl amides using polymer-supported triphenylphosphine: D-glucosyl azide 7 (100 mg, 0.27 mmol) and p-nitrobenzoyl chloride (0.54 mmol) were dissolved in CH₂Cl₂ (5.0 mL). Polymer-supported triphenylphosphine (~3 mmol/g loading, 116 mg, ~0.35 mmol) was added to the tube, and the mixture was agitated until the release of nitrogen gas had ceased. The mixture was then agitated and refluxed gently for 6 hr. The mixture was cooled, gravity filtered into another test tube to remove polymersupported triphenyphosphine oxide, which was washed with CH_2Cl_2 (2 × 5 mL). Polystyrene-bound tris(2-aminoethyl) amine (4.0-5.0 mmol/g loading, 200 mg, ~0.88 mmol) was added to the solution, and the mixture was agitated for 2 hr at room temperature. The polymer was removed via gravity filtration, washed with CH₂Cl₂ $(2 \times 5 \text{ mL})$, and the filtrate was concentrated in vacuo to leave the product residue. Physical characteristics for amide 9a: 400 MHz ¹H NMR (CDCl₃) δ 2.03, 2.04, 2.05 (3s, 12H total, $4 \times COCH_3$), 3.91 (m, 1H, H-5), 4.09 (dd, 1H, H-6, J = 1.83, 12.45 Hz), 4.31 (dd, 1H, H-6', J = 4.39, 12.08 Hz), 5.05 (m, 2H, H-3, H-4), 5.39 (m, 2H, H-1, H-2), 7.32(d, 1H, NH, J = 9.15 Hz), 7.92 (d, 2H, Ar-H), 8.30 (d, 2H, Ar-H). 100 MHz ¹³C NMR $(CDCl_3)$: δ 21.97, 62.63, 69.18, 72.09, 73.41, 74.87, 80.06, 124.96, 129.40, 129.60, 139.08, 151.05, 166.04, 170.77, 171.52, 172.84. Mass calculated: 497.15. Found: 497.18. $[\alpha]_D^{20}$ -19.3 (c 5.1, CH₂Cl₂). TLC R _f-values for glycosyl amides (aluminumbacked silica gel plates using 1:1 EtOAc/hexane as eluent and visualization with 5% H₂SO₄ in ethanol followed by heating on a hot plate): 9a, 0.72; 9b, 0.66; 9c, 0.69; 9d, 0.70; 9e, 0.70; 9f, 0.70; 9h, 0.60; 9j, 0.69; 9k, 0.66; 9l, 0.36.

6

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

Accessibility

Copyright © 2025 Informa UK Limited Cookies Terms & conditions Privacy policy

Registered in England & Wales No. 01072954 5 Howick Place | London | SW1P 1WG