



Synthetic Communications >

An International Journal for Rapid Communication of Synthetic Organic Chemistry

Volume 34, 2004 - [Issue 13](#)

117 | 6

Views | CrossRef citations to date | Altmetric

Original Articles

# Synthesis of Glucopyranosyl Amides Using Polymer-Supported Reagents

Yuriko Y. Root, Maximillian S. Bailor & Peter Norris

Pages 2499-2506 | Received 02 Mar 2004, Published online: 10 Jan 2011

Cite this article <https://doi.org/10.1081/SCC-120039504>



Full Article

Figures & data

References

Citations

Metrics

Reprints & Permissions

Read this article

Share

## Abstract

2,3,4,6-Tetra-O-acetyl- $\beta$ -D-glucopyranosyl azide reacts efficiently with polymer-supported triphenylphosphine and various acid chlorides to yield glucopyranosyl amides with retention of the  $\beta$ -gluco stereochemistry.

## Keywords:

Glycosyl amides

Triphenylphosphine

Polymer-bound iminophosphorane

Polymer-supported Reagents

## Acknowledgments

The authors would like to acknowledge Research Corporation for funding part of this work as well as the University Research Council at Youngstown State University for a PACER award. M.S.B. was a summer student who participated in YSU's National Science Foundation-sponsored Research Experience for Undergraduates program.

---

## Notes

<sup>a</sup>All new compounds were homogeneous by TLC and at least 95% pure as indicated by <sup>1</sup>H NMR spectra. All compounds gave satisfactory analytical data, including <sup>1</sup>H NMR (400 MHz), <sup>13</sup>C NMR (100 MHz), and mass spectra. Typical procedure for the formation of glucopyranosyl amides using polymer-supported triphenylphosphine: D-glucosyl azide 7 (100 mg, 0.27 mmol) and p-nitrobenzoyl chloride (0.54 mmol) were dissolved in CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL). Polymer-supported triphenylphosphine (~3 mmol/g loading, 116 mg, ~0.35 mmol) was added to the tube, and the mixture was agitated until the release of nitrogen gas had ceased. The mixture was then agitated and refluxed gently for 6 hr. The mixture was cooled, gravity filtered into another test tube to remove polymer-supported triphenylphosphine oxide, which was washed with CH<sub>2</sub>Cl<sub>2</sub> (2 × 5 mL). Polystyrene-bound tris(2-aminoethyl) amine (4.0–5.0 mmol/g loading, 200 mg, ~0.88 mmol) was added to the solution, and the mixture was agitated for 2 hr at room temperature. The polymer was removed via gravity filtration, washed with CH<sub>2</sub>Cl<sub>2</sub> (2 × 5 mL), and the filtrate was concentrated in vacuo to leave the product residue. Physical characteristics for amide 9a: 400 MHz <sup>1</sup>H NMR (CDCl<sub>3</sub>) δ 2.03, 2.04, 2.05 (3s, 12H total, 4 × COCH<sub>3</sub>), 3.91 (m, 1H, H-5), 4.09 (dd, 1H, H-6, J = 1.83, 12.45 Hz), 4.31 (dd, 1H, H-6', J = 4.39, 12.08 Hz), 5.05 (m, 2H, H-3, H-4), 5.39 (m, 2H, H-1, H-2), 7.32 (d, 1H, NH, J = 9.15 Hz), 7.92 (d, 2H, Ar-H), 8.30 (d, 2H, Ar-H). 100 MHz <sup>13</sup>C NMR (CDCl<sub>3</sub>): δ 21.97, 62.63, 69.18, 72.09, 73.41, 74.87, 80.06, 124.96, 129.40, 129.60, 139.08, 151.05, 166.04, 170.77, 171.52, 172.84. Mass calculated: 497.15. Found: 497.18. [α]<sub>D</sub><sup>20</sup> -19.3 (c 5.1, CH<sub>2</sub>Cl<sub>2</sub>). TLC R<sub>f</sub>-values for glycosyl amides (aluminum-backed silica gel plates using 1:1 EtOAc/hexane as eluent and visualization with 5% H<sub>2</sub>SO<sub>4</sub> in ethanol followed by heating on a hot plate): 9a, 0.72; 9b, 0.66; 9c, 0.69; 9d, 0.70; 9e, 0.70; 9f, 0.70; 9h, 0.60; 9j, 0.69; 9k, 0.66; 9l, 0.36.

## Information for

Authors

R&amp;D professionals

Editors

Librarians

Societies

## Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

## Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

## Help and information

Help and contact

Newsroom

All journals

Books

## Keep up to date

Register to receive personalised research and resources  
by email

 Sign me up

Copyright © 2026 Informa UK Limited Privacy policy Cookies Terms &amp; conditions

Accessibility



Registered in England & Wales No. 01072954  
5 Howick Place | London | SW1P 1WG