Synthetic Communications >

An International Journal for Rapid Communication of Synthetic Organic Chemistry Volume 34, 2004 - Issue 13

Views CrossRef citations to date Altmetric

Original Articles

Synthesis of Glucopyranosyl Amides Using Polymer-Supported Reagents

Yuriko Y. Root, Maximillian S. Bailor & Peter Norris

Pages 2499-2506 | Received 02 Mar 2004, Published online: 10 Jan 2011

66 Cite this article https://doi.org/10.1081/SCC-120039504

> Sample our Physical Sciences >> Sign in here to start your access to the latest two volumes for 14 days

Full Article

Metrics

Reprints & Permissions

Read this article

Abstract

2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl azide reacts efficiently with polymersupported triphenylphosphine and various acid chlorides to yield glucopyranosyl amides with retention of the β-gluco stereochemistry.

Q Keywords: Glycosyl amides

Polymer-s

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy

Essential Onl

Accept All

Settings rt of this

sity for a

The aut work as PACER award. M.S.B. was a summer student who participated in YSU's National Science Foundation-sponsored Research Experience for Undergraduates program.

Notes

^aAll new compounds were homogeneous by TLC and at least 95% pure as indicated by ¹H NMR spectra. All compounds gave satisfactory analytical data, including ¹H NMR (400 MHz), ¹³C NMR (100 MHz), and mass spectra. Typical procedure for the formation of glucopyranosyl amides using polymer-supported triphenylphosphine: D-glucosyl azide 7 (100 mg, 0.27 mmol) and p-nitrobenzoyl chloride (0.54 mmol) were dissolved in CH_2Cl_2 (5.0 mL). Polymer-supported triphenylphosphine (~3 mmol/g loading, 116 mg, ~0.35 mmol) was added to the tube, and the mixture was agitated until the release of nitrogen gas had ceased. The mixture was then agitated and refluxed gently for 6 hr. The mixture was cooled, gravity filtered into another test tube to remove polymersupported triphenyphosphine oxide, which was washed with CH_2Cl_2 (2 × 5 mL). Polystyrene-bound tris(2-aminoethyl) amine (4.0-5.0 mmol/g loading, 200 mg, ~0.88 mmol) was added to the solution, and the mixture was agitated for 2 hr at room temperature. The polymer was removed via gravity filtration, washed with CH₂Cl₂ $(2 \times 5 \text{ mL})$, and the filtrate was concentrated in vacuo to leave the product residue. Physical characteristics for amide 9a: 400 MHz ¹H NMR (CDCl₃) δ 2.03, 2.04, 2.05 (3s, 12H total, $4 \times COCH_3$), 3.91 (m, 1H, H-5), 4.09 (dd, 1H, H-6, J = 1.83, 12.45 Hz), 4.31 (dd, 1H, H-6', J = 4.39, 12.08 Hz), 5.05 (m, 2H, H-3, H-4), 5.39 (m, 2H, H-1, H-2), 7.32(d, 1H, NH, J = 9.15 Hz), 7.92 (d, 2H, Ar-H), 8.30 (d, 2H, Ar-H). 100 MHz 13 C NMR (CDCl₃): δ 21.97, δ 2.63, δ 9.18, δ 72.09, δ 73.41, δ 74.87, δ 80.06, δ 74.96, δ 72.40, δ 74.87, δ 80.06, δ 80.06, δ 9.18, δ 9.18, 139.08, 151.05, 166.04, 170.77, 171.52, 172.84. Mass calculated: 497.15. Found: 497.18. $[\alpha]_D$ ²⁰ -19.3 (c 5.1, CH₂Cl₂). TLC R _f-values for glycosyl amides (aluminum-

backed s H₂SO₄ ir 0.70; 9e

Relate

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources by email

Sign me up

Copyright © 2024 Informa UK Limited Privacy policy Cookies Terms & conditions

Accessibility

Registered in England & Wales No. 3099067 5 Howick Place | London | SW1P 1WG

About Cookies On This Site

We and our partners use cookies to enhance your website experience, learn how our site is used, offer personalised features, measure the effectiveness of our services, and tailor content and ads to your interests while you navigate on the web or interact with us across devices. You can choose to accept all of these cookies or only essential cookies. To learn more or manage your preferences, click "Settings". For further information about the data we collect from you, please see our Privacy Policy

Essential Onl

Settings