

Nanotoxicology >

Volume 7, 2013 - [Issue 1](#)

388 | 50 | 2
Views | CrossRef citations to date | Altmetric

Research Article

NIST gold nanoparticle reference materials do not induce oxidative DNA damage

Bryant C. Nelson , Elijah J. Petersen, Bryce J. Marquis, Donald H. Atha, John T. Elliott, Danielle Cleveland, ... [show all](#)

Pages 21-29 | Received 23 May 2011, Accepted 09 Sep 2011, Published online: 02 Nov 2011

[Cite this article](#) <https://doi.org/10.3109/17435390.2011.626537>

Sample our
Bioscience
Journals
 [Sign in here](#) to start your access
to the latest two volumes for 14 days

[Full Article](#)

[Figures & data](#)

[References](#)

[Supplemental](#)

[Citations](#)

[Metrics](#)

[Reprints & Permissions](#)

[Read this article](#)

[Share](#)

Abstract

One primary challenge in nanotoxicology studies is the lack of well-characterised nanoparticle reference materials which could be used as positive or negative nanoparticle controls. The National Institute of Standards and Technology (NIST) has developed three gold nanoparticle (AuNP) reference materials (10, 30 and 60 nm). The genotoxicity of these nanoparticles was tested using HepG2 cells and calf-thymus DNA. DNA damage was assessed based on the specific and sensitive measurement of four oxidatively-modified DNA lesions (8-hydroxy-2'-deoxyguanosine, 8-hydroxy-2'-deoxyadenosine, (5'S)-8,5'-cyclo-2'-deoxyadenosine and (5'R)-8,5'-cyclo-2'-deoxyadenosine) using liquid chromatography/tandem mass spectrometry. Significantly elevated, dose-dependent DNA damage was not detected at concentrations up to 0.2 µg/ml, and free radicals were not detected using electron paramagnetic resonance

spectroscopy. These data suggest that the NIST AuNPs could potentially serve as suitable negative-control nanoparticle reference materials for in vitro and in vivo genotoxicity studies. NIST AuNPs thus hold substantial promise for improving the reproducibility and reliability of nanoparticle genotoxicity studies.

Keywords::

DNA damage

genotoxicity

gold nanoparticles

mass spectrometry

reference materials

Acknowledgements

The authors acknowledge and thank Miral Dizdaroglu of NIST for his scientific advice and assistance with the DNA damage data interpretation. The authors would like to thank Teresa Butler, Vince Hackley, Stephen E. Long and Michael Winchester of NIST for providing the AuNP RMs for the reported experiments and/or for helping to characterise the RMs in the calf-thymus DNA incubation samples. In addition, we would like to thank Alessandro Tona of NIST for culturing the HepG2 cells for the 24 h DNA damage portion of the study.

Related Research Data

[Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity](#)

Source: Small

[Size-Dependent Cytotoxicity of Gold Nanoparticles](#)

Source: Small

[CeO₂nanoparticles induce DNA damage towards human dermal fibroblastsin vitro](#)

Source: Nanotoxicology

[Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer](#)

Source: International Journal of Radiation Biology

[Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles](#)

Source: New Journal of Chemistry

Related research

People also read

Recommended articles

Cited by
50

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

[Sign me up](#)

[Sign me up](#)

[Sign me up](#)