

Biofuels >

Volume 4, 2013 - [Issue 5](#)

207 | 25 | 0
Views | CrossRef citations to date | Altmetric

Editorial

Grazers: the overlooked threat to the sustained production of future algal biofuels

John G Day

Pages 459-461 | Published online: 09 Apr 2014

Cite this article <https://doi.org/10.4155/bfs.13.29>

Sample our Engineering & Technology Journals
>> [Sign in here](#) to start your access to the latest two volumes for 14 days

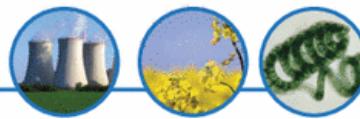
Full Article

Figures & data

References

Citations

Metrics


Reprints & Permissions

Read this article

Share

Grazers: the overlooked threat to the sustained production of future algal biofuels

Biofuels (2013) 4(5), 459–461

“We are currently at an exciting and dynamic phase in the development of new biofuels, with algae being seen as a realistic, commercially viable option. However, there are clearly still significant biological constraints to their commercialization, with grazing being largely overlooked by most researchers. **”**

John G Day*

Keywords: algal biofuel ■ amoeba ■ biological constraints ■ ciliates ■ grazers

A brief search on the internet will provide any reader with sufficient information and misinformation to convince them that microalgae are clearly the answer to future transport fuel poverty, and simultaneously that algal biofuels are not practicably feasible. What is true is that algae, a hugely diverse group of organisms, include taxa that: are capable of very high levels of productivity/solar energy conversion [1]; can produce oils and other products with biofuel potential [1,2]; do not need to compete with potable or irrigation water supplies; and, importantly, have a proven track record of upscaling and commercialization [3,4]. The author is convinced that algae will in the future be a major platform for the production of a wide range of biotechnological products and that they have, in the longer term, huge potential as biofuel producers. Irrespective of the product, economics will drive processes towards large-scale production plants and for relatively cheap products such as fuels lower cost open-pond-based systems are inevitable. If one makes a 'back of the envelope' calculation using *Nannochloropsis oculata* with 10 pg of lipid cell⁻¹ [5] as a starting point, then based on cell densities routinely obtained in the author's laboratory ($\sim 5.0 \times 10^7$ cells ml⁻¹) and a pond system with a depth of

10 cm, assuming no significant harvesting or extraction/processing losses, approximately 2000 l of algae/20 m² of pond need to be harvested to produce 1 kg of oil. Clearly, even with enhanced lipid levels per cell and higher cell densities at harvest, future microalgal biofuel production facilities will have very large geographical footprints. Such large open-pond facilities make the likelihood of 'contamination' by other microorganisms an inevitability, not a probability.

Interactions of biofuel algae with other microorganisms

In vivo, even in uni-algal cultures, complex microbial interactions are the norm, with algae providing sources of fixed carbon through leakage from healthy cells for commensal bacteria providing the algae with vitamins, for which many photo-autotrophic algae are auxotrophic [6]. There are a variety of other advantageous bacterial/ algal relationships including facilitation of iron uptake by the production of extracellular iron-binding siderophores, by specific bacteria associated with phytoplankton [7]. However, not all interactions are positive, as in terrestrial crops 'disease' is a significant threat. Many phytoplankton are susceptible to fungal

* The Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll, PA27 1QA, UK
Tel: +44 1631 55949; Fax: +44 1631 559001; E-mail: jgd@sams.ac.uk

Financial & competing interests disclosure

JG Day acknowledges National Capability funding for the Culture Collection of Algae and Protozoa from the UK Natural Environment Research Council. The author has no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Log in via your institution

› Access through your institution

Log in to Taylor & Francis Online

› Log in

Restore content access

› Restore content access for purchases made as guest

Purchase options *

[Save for later](#)

PDF download + Online access

- 48 hours access to article PDF & online version
- Article PDF can be downloaded
- Article PDF can be printed

EUR 56.00

 Add to
cart

Issue Purchase

- 30 days online access to complete issue
- Article PDFs can be downloaded
- Article PDFs can be printed

EUR 316.00

 Add to
cart

* Local tax will be added as applicable

Related Research i

People also read

Recommended articles

Cited by
25

Information for

Authors

R&D professionals

Editors

Librarians

Societies

Opportunities

Reprints and e-prints

Advertising solutions

Accelerated publication

Corporate access solutions

Open access

Overview

Open journals

Open Select

Dove Medical Press

F1000Research

Help and information

Help and contact

Newsroom

All journals

Books

Keep up to date

Register to receive personalised research and resources
by email

 Sign me up

Copyright © 2026 Informa UK Limited

[Privacy policy](#)

[Cookies](#)

[Terms & conditions](#)

[Accessibility](#)

 Taylor and Francis Group

Registered in England & Wales No. 01072954
5 Howick Place | London | SW1P 1WG