

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use

of our cookies. <u>Learn More</u>

S. FRIDJINE and M. AMLOUK

https://doi.org/10.1142/S0217984909020321 | Cited by: 71 (Source: Crossref)

< Previous

Abstract

In this study, we define a synthetic parameter: optothermal expansivity as a quantitative guide to evaluating and optimizing both the thermal and the optical performance of PV-T functional materials. The definition of this parameter, ψ_{AB} (Amlouk-Boubaker parameter), takes into account the thermal diffusivity and the optical effective absorptivity of the material. The values of this parameter, which seems to be a characteristic one, correspond to the total volume that contains a fixed amount of heat per unit time (m³ s⁻¹) and can be considered as a 3D velocity of the transmitted heat inside the material.

As the PV-T combined devices need to have simultaneous optical and thermal efficiency, we try to investigate some recently proposed materials (β-SnS₂, In₂S₃, $ZnS_{1-x}Se_x|_{0 \le x < 0.5}$ and Zn-doped thioindate compounds) using the newly established ψ_{AB}/E_{α} abacus.

Keywords: Solar spectrum $= In_2S_3 = ZnIn_2S_4 = optothermal expansivity = In_2S_3 = ZnIn_2S_4 = optothermal expansivity = In_2S_3 = In_2S_4 = optothermal expansivity = In_2S_3 = In_2S_4 = optothermal expansivity = In_2S_4 = optothermal expan$ effective absorbance - thermal diffusivity

PACS: 61.82.Fk, 66.30.Xj, 66.70.Df, 78.20.Ci, 78.66.Li, 79.60.Dp, 84.60.Jt, 91.60.Ki

Privacy policy

© 2024 World Scientific Publishing Co Pte Ltd

Powered by Atypon® Literatum